--

�

	Disclaimer

Okay, I did the German-->English translation. I do however have absolutely no connection to the author(s) or distributing channels of the programs or any associated part of it. I do not know him and have never been in contact with him to my knowledge. The same goes the other way around. This is just my own, personal translation of some documentation, folks. It has not been checked by the author of the original German document, nor is it known to him, that I did this translation.

Therefore, save the effort - I can and will not answer any question arising in using this trans-lation or the programs for that part. Use, comment, change and distribute this translation as you need. But note the limitations!

If I could afford it, I would spend more time travelling the world, trying to learn more about foreign languages and cultures, and maybe be able to do better translations...

have fun! Helge

--

VBMDis - the Make-Discompiler

VBMDis is the direct follow-up version of VBDis. VBMDis is meant primarily for the optimising of programs and allows first of all for a comparison of source code and the executable program. You can therefor see and (try for yourself) from the tokens shown and the description of the variables, which changes do make your program smaller and faster.

The installation of VBMDis is as easy as before - you just need to copy VBDis to some HDD directory. No set-up program is needed, no *.INIs, *.VBXs or *.DLLs changed. The de-installation goes the same way. Kill the directory/file, and the discompiler has left you.

Create the executable program and give VBMDis the makefile. Then the discompiler starts (like in VBDis). Two windows with the modules of the interpreter and the executable program show up. The windows themselves are also tiled showing (1) the module chosen and the sub-program and (2) the display for the texts and tokens for the every marked line. The size of the areas covered can be adjusted like in the interpreter, the mouse cursor will change its style above the area in question to show this.

For the display of tokens the sources need to saved in binary code

If you normally save your programs as text (compatible with the project manager), copy the project and save the copy modules in binary mode. VBPro is assisting you with the option project/create/copy (‘Projekt / Erzeugen / Kopie ‘) - the saving as text you need to do yourself.

The windows of VBMDis

The main window is a MDI-window, in which two windows (one for the modules of the interpreter and one for the modules of the compiled programs) appear after opening a project. For the analysis of the program the window known from VBDis appears. Additional windows with global variables and the module-variables can be opened.

With the option Fenster|Untereinander (windows / tile horizontal) you can choose the position of the make- and the exe-window in regard to each other. Long lines can be read better, if the windows are placed upon each other (gives some more width), while the comparison of texts and tokens is easier, while the windows are next to each other.

The selection of the modules and sub-programs is implemented in both windows separately, in the EXE-window a module with all global declarations will be displayed. Next to the marked lines in the source-code the tokens associated with them are display above them showing the name and their arguments (in hex). The declaration-parts do not provide for EXE-tokens, the same goes for the declaration of sub-programs and the local variables. However, some tokens of the executable program, which have been added by the compiler and are not shown by the source-code, are shown. They can be identified by the name exe, there might also be some type-conversion (C<typ>) which have been added.

In the EXE-window it can be seen, which arguments are on the stack. The type-signs used are the typical VB. signatures (%, &, !, #, @, $) and A (for arrays), O (objects), T (type) and v (variant). Pointer are identified with the ctrl-sign (^) in front of the arguments, where fields, types and objects are always in form of a pointer. The same is true for strings, ByVal is producing a pointer to a copy of this string. So the discompiler can not differentiate every time, if strings are called ByVal or ByRef, this differentiation is only possible from the call of the sub-program.

The arguments or operations of tokens are listed once more in the next column, whereby a notation similar to functions is used. The datatype, which is pushed on the stack by the token, is likewise displayed as type-symbol. A proclamation of the used variable can stand ahead of this. Sub-programs and variables are shown with scope and offset, using the signs g, m, p, and l (like in global, modulespecial sub-programs or variables or parameters [arguments] and local variables. For parameters (arguments) a combination of pv (like in ByVal-parameter) is also used. Behind them in bracket are the arguments, which are popped from the stack during the execution of the tokens.

The presentation of the stack allows for the recognition of unnecessary type-conversion. An example to show this with Mid and Mid$:

The statement

	s$ = Mid$(x$, y%)

is producing a string directly, while

	s$ = Mid(x$, y%)

also produces a string only on first sight; actually in the runtimesystem only a Mid$ is implemented, this string is then converted to a variant (notation v(S)) - which is basically equal to Mid(). Before the statement can take place this variant is then converted (again) into a string (notation $(v)).

With constants and single-variables there can also be unnecessary conversations, which slow down the program without any need to do so. The best alternative you can find out, if you implement the lines which follow one another and then compare the tokens. The type single is only useful in fields, where memory can be saved - in most direct calls a conversation into double (notation #(!)) is being conducted. Again, slower than a direct call of a double-variable.

Buttons within the Code-windows

Since the succeeding row of the modules in the makefile and in the compilated program can differ you need to specify the pointing of the modules and the sub-programs yourself. To assist you there are the two buttons assign (‘zuweisen’) in the make-window. The top one copies the name of the module and all sub-programs in the chosen module in the EXE-window, the lower button copies the name of the chosen function, if this seems necessary.

The other buttons in the make-window can be regarded as debug-functions for the discompiler; I have left them in the form to have a better chance to find errors. If you want to check on these functions, activate first Modus|Vergleich (modus / comparison) in the menu. This will exchange all names with <var> and in the make-window all lines, which are not shown in the executable program, will be suppress. With the buttons you can than compare either all sub-programs, the sub-program you are in at that moment of the next sub-program.

In the EXE-window you can also change the name of a module, which you have been provided in the textfield of the ComboBox, with the button umbennen (rename). The button Typen? (types?) activates as well a debug-function, which can be used diagnosing some problems in the differentiation of used variable types. More interesting is the button variables (variablen). It opens a window showing the variables in the used module. The window for the global variables is opened with the menu-option Fenster|Global (window / global).

Variable-window

The window for global and module-specific variables is pretty much identical. To the left a list indicates all variables, the chosen one is also displayed in the head of the window. In the right list a dump of the associated data is shown. In the EXE-window you can double-click a token-line. A window with the module-variables is opened and the from the token chosen variable is marked. In the list of variables you will find the offset of the data-structure, the saved value, the ascending number of the sub-program, in which the variables are defined locally, and the name of the variable. At the beginning of the list you will find the names of all functions of a module, in the global area there can also be the type declarations of the programs.

Right now the names of the variables are not taken from the source code. But you can assign the right names to all variables. To do this chose a variable from the list, fill in the name and assign it with the button labelled Name (‘name’).

The assignment of datatypes is somewhat a more complicated. Chose the scope (global, module, parameter, local...) and the type of the variable and assign this to the variable in question with the button labelled As. For arrays, strings, types and objects the type will be looked up automatically, i.e. if the chosen type is correct. In the dump all information of the variable is given, therefore more text can be displayed even for plain variables. Small and firm arrays are often directly saved, so it is possible, with the help of an appropriate tool, to have a firm initialisation within the compiled program!

Undefined variable-types are coming mainly from variables and constants, which are not used in the program and therefore the discompiler can not identify their position and the type of these variables. You can delete all belonging declarations from your program. The same goes for all not used parameters or whole sub-programs, which can be distinguished by their incomplete or missing arguments. Parameters and functions-returns are also made out by their hex *0000* offset in the dump.

Global variables and constants are described in the modules through offsets, under which the variables are stored in the global address-space. For module-constants the value is saved in the module, while true module-variables are having the value NULL. Constant strings are described by a pointer to an separate address-space, while values for numeric constants are saved directly.

Saving

In the light-version all names and types are saved and are available at the next call of VBMDis. Use a separate directory for the project, in which the different files are saved to. If you are compiling the program again, you need to delete all files in that directory or the directory itself, since the discompiler will otherwise will not detect the changes made.

Custom-Controls

In the light-version the description-detection and saving of the custom-controls (VBX-files) is possible with the VBX-tool VBCtrl. This program has been subject to extensive changes, so the preliminary version is neither needed any longer nor supported.

The discompiler is displaying a MsgBox each time it finds an unknown control element. Leave this MsgBox open and start VBCtrl. Chose the file in question and open it with a double-click on the menu. A window with all the global entries of the file - you need to find the control-procedures of the control-elements. These procedures can be identified by their names ...CTRLPROC (see CDK). If you choose a name from the left list, a reference to this procedure, which embodies possible definitions, is shown in the list to the middle. In the right window a short description of the potential definition, chosen from the middle-list is shown. If there is a error message, the likelihood is high that you have not hit a description. Be aware of the version and the class-name of the control! For identical class-names (CN) choose the description with the highest version number (VN); prefer ‘0300’ for Visual Basic 3.0.

With the button on top of the label a complete description from the file will be loaded and shown in an additional window. Close this window again and load all controls from the VBX-file.

If you close the ‘reference’ - window, the found descriptions will be saved - in the demo-versions only an error message is shown. Well, register (see register.wri).

Now you chose in the VBMDis MsgBox the button Wiederholen (‘repeat’) and the program should find and use the newly created description. The VBCtrl and VBMDis should reside in the same directory, otherwise the descriptions (*.300) need to be copied into the directory of VBMDis. The saved description has to great extent been compressed, and therefore only VBMDis is able to use these descriptions. The documentation in the old format (still included) are much bigger and are used not only by VBMDis, but also by VBDis. Do not delete or change these files.

What’ left?

Since the functions of VBMDis can be used for the optimising of programs, a differentiation between DoDi’s VB.-tools in discompiler and developers-tools does not make any sense. The registration has been changed the VB.-tools come with or without discompiler. The registered users for the discompiler will receive updates as usual for VBDis and VBCtrl. They should however take into account to upgrade to the complete tool package to protect their programs with VBPro against the discompiler.

Please note, that VBMDis3 and VBDis3 in the light version can not work with code bigger than 64 KB. If you are getting an error message along that line, you need to split the bigger modules into a few smaller ones. Since VB. 4.0 has nearly hit the shop, there will not be any time, to make these complex changes to prepare the VB. 3.0 discompiler to handle bigger programs. The discompiler for VB. 4.0 will not show this limitations any longer.

