Prerequisites:

1. Understanding of fundamental object-oriented design principles.

2. Familiarity with C# .

3. Familiarity with commonly used classes in the .NET class library.

4. Familiarity with UML.

Level of Difficulty: 2

Summary

Design patterns provide a powerful tool in designing flexible software. They provide well-tested solutions to recurring software design problems. One such widely used pattern is the Concrete Factory pattern. The Factory pattern decouples objects from knowledge about the creation of other objects or even the underlying type of those objects. Too often, however, the factory pattern is not applied optimally, creating subtle coupling issues between various participants of the pattern. This article presents an approach to creating factory classes that removes dependencies that are prevalent in the most common implementations of this useful pattern through the use of reflection.

Creating Dynamic Factories in .NET Using Reflection

Introduction

Two of the sacred tenets of sound software design passed down to us from the days of structured design are the enforcement of low module coupling and high cohesion. Coupling determines how strongly or closely related software components are, while cohesion relates to the single-mindedness or level of focus within a software unit, be it a method, class, or class library. Design patterns came along as the software industry struggled to follow these principles in a structured and repeatable manner. Patterns provide a recipe, so to speak, for solving commonly occurring design problems in a way that provides for low coupling and high cohesion, and they are the result of many software development practitioners’ cumulative experience over the years. This article assumes the reader has a solid grasp of fundamental object-oriented design principles, familiarity with C#, and a cursory knowledge of reflection.

The Factory Design Pattern

The Factory pattern is possibly one of the most widely used design patterns. Object-oriented software applications could not function without the creation of objects. In order for an object A to send a message to object B, A must have a reference to B, which means that class B must be instantiated and a reference to object B must be available to A. If object A instantiates B, A has a direct reference to B, but now they are tightly coupled, since A must know how to create B. In order to reduce this tight coupling between A and B, it is best to give the responsibility of creating B to a third class (a factory class) C so that, in addition to reducing the strength of coupling between A and B, other potential consumers of B could request C for an instance of B as well. This is what the Factory design pattern provides to us. Note that coupling is not eliminated between A and B, rather it is weakened, because A no longer needs to know how to create B. A further weakening of this coupling would be achieved if factory class C returned an interface to B, I, rather than the concrete object itself. This would ensure that no matter how many implementations of I exist, A would only know of I. The presence of an interface renders coupling even weaker, because A is further abstracted from new implementations of interface I.

Figure 1.0 provides a high level logical view of the Factory pattern. The Client is any object that needs an object from the Factory. The Product is the object returned to the Client by the Factory.

Figure 1.0 A logical view of the Factory pattern.

Common Implementations of the Factory Pattern

There are quite a few implementation variations of the factory pattern. We’ll look at the pros and cons of two of the most common approaches, and then a new approach, using reflection, will be introduced.

The first implementation we’ll examine is where an abstract factory is used. Let’s suppose we have a computer parts store inventory application where InventoryMgr is the Client class, PartsFactory is the abstract factory and IPartsInventory is the product returned by the concrete factories MonitorInvFactory and KeyboardInvFactory. The UML diagram in Figure 2.0 illustrates this implementation. MainClass is a class that sends a request to InventoryMgr.

Figure 2.0 The Factory pattern using an abstract and concrete factories.

Let’s take a closer look at what is happening in Figure 2.0. The MainClass simply represents an object that passes on the user’s request to InventoryMgr. If MainClass needed to replenish the inventory of monitors, for example, it would send a message to the InventoryMgr object to replenish the inventory of monitors.

 class MainClass {

 static void Main(string[] args) {

 PartsFactory myfactory = null;

 InventoryMgr myinvmgr = new InventoryMgr();

 foreach(string marg in args){

 switch(marg) {

 case “Monitors”:

 myfactory = new MonitorInvFactory();

 break;

 case “Keyboards”:

 myfactory = new KeyboardInvFactory();

 break;

 default:

 break;

 }

 if(myfactory != null)

 myinvmgr.ReplenishInventory(myfactory);

 mfactory = null;

 }

 }

 }

 class InventoryMgr {

 public void ReplenishInventory(PartsFactory vfactory) {

 IPartsInventory = vfactory.ReturnPartInventory();

 IPartsInventory.Restock();

 }

 }

 interface IPartsInventory() {

 public void Restock();

 }

 class MonitorInventory : IPartsInventory {

 public void Restock() {

 Console.WriteLine(“The monitor inventory has been restocked”);

 }

 }

 class KeyboardInventory : IPartsInventory {

 public void Restock() {

 Console.WriteLine(“The keyboard inventory has been restocked”);

 }

 }

 Figure 3.0 MainClass, InventoryMgr, and IPartsInventory Code Fragments

Now let’s take a look at the code in the abstract factory PartsFactory and the concrete factories MonitorInvFactory and KeyboardInvFactory.

 abstract class PartsFactory {

 public abstract IPartsInventory ReturnPartInventory();

 }

 class MonitorInvFactory : PartsFactory {

 public override IPartsInventory ReturnPartInventory() {

 return (IPartsInventory) new MonitorInventory();

 }

 }

 class KeyboardInvFactory : PartsFactory {

 public override IPartsInventory ReturnPartInventory() {

 return (IPartsInventory) new KeyboardInventory();

 }

 }

 Figure 4.0 Abstract and concrete factory code fragments

Although this is a reasonable approach to implement the factory pattern, it has its shortcomings. Consider how coupling manifests itself and to what degree it is present. The InventoryMgr class looks good, since it’s shielded from knowing about any of the concrete factories, so coupling is low. The addition of new concrete factories in the future will not affect it. InventoryMgr is also decoupled from the different implementations of IPartsInventory by having a reference to the interface instead of a concrete implementor object. So, what is the problem?

One of the axioms in object-oriented design is “don’t talk to strangers”, meaning that objects should not have a reference to objects they do not absolutely need in order to function properly. If you look at the code fragment for MainClass in Figure 3.0, this rule is violated because MainClass creates concrete factories. MainClass does not truly need to know about concrete factories in order to function properly, since it does not send a message to them. It simply creates them and passes them on to InventoryMgr. This creates unnecessary coupling between MainClass, MonitorInvFactory, and KeyboardInvFactory.

As a general rule, objects should only create other objects if they plan on sending a message or messages to those objects, unless their main responsibility is the creation and return of those objects. Factories, for instance, are such classes. An adverse effect of unnecessary coupling is lower cohesion. MainClass has low cohesion as well, since given its role of “message forwarding agent” to InventoryMgr, it should not concern itself with what concrete factories are needed to process the request. Its focus should simply be taking a request, possibly repackaging it, then sending it to the InventoryMgr class for further processing. As we’ll see later on, reflection helps remove unnecessary coupling and improve cohesion in all classes that participate in the Factory pattern.

Let’s examine another popular implementation of the Factory pattern. This approach does not make use of abstract factories. It only uses a concrete factory to create objects, therefore it is considerably less complex. The UML diagram in Figure 5.0 illustrates this approach.

Figure 5.0 The Factory pattern without abstract factories.

Let’s take a look at what the code looks like in MainClass, InventoryMgr, and PartsFactory.

 class MainClass {

 static void Main(string[] args) {

 InventoryMgr myinvmgr = new InventoryMgr();

 foreach(string marg in args){

 switch(marg) {

 case “Monitors”:

 myinvmgr.ReplenishInventory(enmInvParts.Monitors);

 break;

 case “Keyboards”:

 myinvmgr.ReplenishInventory(enmInvParts.Keyboards);

 break;

 default:

 break;

 }

 }

 }

 }

 public enum enmInvParts : int {Monitors = 1, Keyboards};

 class InventoryMgr {

 public void ReplenishInventory(enmInvParts InventoryPart) {

 IPartsInventory = vfactory.ReturnPartInventory(InventoryPart);

 IPartsInventory.Restock();

 }

 }

 class PartsFactory {

 public IPartsInventory ReturnPartInventory(enmInvParts InvPart) {

 IPartsInventory invpart;

 switch(InvPart) {

 case enmInvParts.Monitors:

 invpart = new MonitorInventory();

 break;

 case enmInvParts.Keyboards:

 invpart = new KeyboardInventory();

 break;

 default:

 invpart = null;

 break;

 }

 return invpart;

 }

 }

Figure 6.0

The code for IPartsInventory, MonitorInventory, and KeyboardInventory has not changed (see Figure 3.0)

Figure 6.0 demonstrates that the code in MainClass is significantly cleaner, less coupled, and more cohesive than the previously discussed implementation (see Figure 3.0). MainClass is no longer “talking to strangers.” Instead of being coupled to abstract and concrete factories, it is now only coupled to the enumeration enmInvParts, which simply provides a repackaging mechanism of the request passed through the command line. Repackaging the request is a natural for MainClass, since it fits well with its responsibility of simply passing on the request to InventoryMgr. At first glance, it looks like our coupling and cohesion issues have disappeared, so we can all pop the champaigne bottle and declare victory. Well, not yet.

If we take a closer look, we see that coupling has moved residence from MainClass to PartsFactory. Although PartsFactory is now coupled to IPartsInventory and its implementor objects, coupling does not affect it nearly as adversely as MainClass was affected in the previously mentioned implementation of the Factory pattern (see Figure 3.0), because class cohesion has not deteriorated. In other words, PartsFactory remains focused. If we could remove this hard-coded coupling from the factory, we would achieve the holy grail of object-orientation, that is, lowest possible coupling and highest cohesion in all the classes that make up the implementation of the Factory pattern. Stay tuned, as the next section describes how reflection can get us pretty close to that lofty goal.

A Dynamic Factory Using Reflection

Reflection is simply a mechanism that allows components or classes to interrogate each other at runtime to discover information that goes beyond the information gleaned from the publicly available interfaces the objects expose. In essence, reflection enables objects to provide information about themselves, or meta-data.

.NET provides the ability of objects to describe themselves through the use of attributes. An attribute is declared as a class that inherits from System.Attribute. Once an attribute is defined, it can be attached to types such as interfaces, classes, or an assembly. The following code fragment defines two attributes:

 [AttributeUsage(AttributeTargets.Class)]

 public class InventoryPartAttribute : Attribute {

 private enmInvPart mInventoryPart;

 public InventoryPartAttribute (enmInvParts vInvPart)
{

 mInventoryPart = vInvPart;

 }

 public enmInvPart [] InventoryPartSupported {

 get {return mInventoryPart;}

 set { mInventoryPart = value;}

 }

 }

 [AttributeUsage(AttributeTargets.Interface)]

 public class ImplAttr : Attribute {

 private Type[] mImplementorList;

 public ImplAttr(Type[] Implementors){

 mImplementorList = Implementors;

 }

 public Type[] ImplementorList {

 get {return mImplementorList;}

 set {mImplementorList = value;}

 }

 }

Figure 7.0

The first attribute defined in Figure 7.0 is InventoryPartAttribute. This attribute will be attached to the classes that implement the IPartsInventory interface. The next lines of code illustrate how this is achieved:

 [InventoryPartAttribute(enmInvPart.Monitors)]

 class MonitorInventory : IPartsInventory {

 public void Restock() {

 Console.WriteLine(“The monitor inventory has been restocked”);

 }

 }

 [InventoryPartAttribute(enmInvPart.Keyboards)]

 class KeyboardInventory : IPartsInventory {

 public void Restock() {

 Console.WriteLine(“The keyboard inventory has been restocked”);

 }

 }

 Figure 8.0

The second attribute defined in Figure 7.0 is attached to the interface IPartsInventory. This allows for the interface to be interrogated as to which types implement it:

 [ImplAttr(new Type[]{typeof(MonitorInventory),typeof(KeyboardInventory)})]

 interface IPartsInventory() {

 public void Restock();

 }

So far, we have created two attributes and attached them to the IPartsInventory interface and the classes that implement the interface (MonitorInventory and KeyboardInventory).

The class with the largest amount of code changes is PartsFactory. This should certainly be no surprise, since it is the class whose hard-coded switch statement we are trying to replace with something more dynamic through the use of attributes. Let’s examine each line of code of the newly modified PartsFactory class in Figure 9.0.

The first line retrieves the ImplAttr attribute of the IPartsInventory:

Attr = Attribute.GetCustomAttribute(typeof(IPartsInventory), typeof(ImplAttr));

Next, the Attr attribute is cast to our custom ImplAttr attribute and the array of types that implement IPartsInventory is retrieved by reading the attribute’s ImplementorList property:

IntrfaceImpl = ((ImplAttr)Attr).ImplementorList;

Next, we determine the number of classes that implement the interface by obtaining the length of the IntrfaceImpl array:

ImplementorCount = IntrfaceImpl.GetLength(0);

Next, we loop through the IntrfaceImpl array. The first thing we do within the loop is retrieve the InventoryPartAttribute attribute of each interface implementor class:

Attr = Attribute.GetCustomAttribute(IntrfaceImpl[i], typeof(InventoryPartAttribute));

Then, we cast the Attr attribute to our custom InventoryPartAttribute attribute and extract its value into our enmInventoryPart variable:

InvPartAttr = (InventoryPartAttribute)Attr;

enmInventoryPart = InvPartAttr.InventoryPartSupported;

Then, if the value of the enumerator extracted above matches the enumerator passed in by the client, the class supports the right type if inventory part, so we instantiate it and break out of the loop:

if(InventoryPart == vInvPart) {

obj = Activator.CreateInstance(IntrfaceImpl[i])

 InvPart = (IPartsInventory)obj;

 break;

 }

Finally, the factory returns the IPartsInventory object:

return InvPart;

 class PartsFactory {

 public IPartsInventory ReturnPartInventory(enmInvParts vInvPart) {

 IPartsInventory InvPart;

 object Obj;

 Type[] IntrfaceImpl;

 Attribute Attr;

 enmInvPart enmInventoryPart;

 InventoryPartAttribute InvPartAttr;

 int ImplementorCount;

 //Retrieve the attribute ImplAttr attached to the IPartsInventory

 //interface

 Attr = Attribute.GetCustomAttribute(typeof(IPartsInventory),

 typeof(ImplAttr));

 //Retrieve the Type array containing the types that implement

 //the IPartsInventory interface

 IntrfaceImpl = ((ImplAttr)Attr).ImplementorList;

 //Determine the number of classes that

 //implement IPartsInventory

 ImplementorCount = IntrfaceImpl.GetLength(0);

 for (int i = 0; i < ImplementorCount; i++) {

 Attr = Attribute.GetCustomAttribute(IntrfaceImpl[i],

 typeof(InventoryPartAttribute));

 InvPartAttr = (InventoryPartAttribute)Attr;

 //Determine what inventory part this class supports

 enmInventoryPart = InvPartAttr.InventoryPartSupported;

 if(InventoryPart == vInvPart) {

 obj = Activator.CreateInstance(IntrfaceImpl[i])

 InvPart = (IPartsInventory)obj;

 break;

 }

 }

 return InvPart;

 }

 }

Figure 9.0

Let’s look at what happens when the need arises to add another object that implements the IPartsInventory interface. Let’s name this object MousePadInventory. After we update the enmInvParts enumerator to accommodate the new inventory part, we need to define our new class and attach the InventoryPartAttribute attribute to it:

 public enum enmInvParts : int {Monitors = 1, Keyboards, MousePads};

 [InventoryPartAttribute(enmInvPart.MousePads)]

 class MousePadInventory : IPartsInventory {

 public void Restock() {

 Console.WriteLine(“The mousepad inventory has been restocked”);

 }

 }

Next, the ImplAttr attribute of the IPartsInventory interface needs to reflect that a new class is implementing the interface:

 [ImplAttr(new Type[]{typeof(MonitorInventory),typeof(KeyboardInventory),

 typeof(MousePadInventory})]

 interface IPartsInventory() {

 public void Restock();

 }

Then, we update MainClass to handle the new type of request:

class MainClass {

 static void Main(string[] args) {

 InventoryMgr myinvmgr = new InventoryMgr();

 foreach(string marg in args){

 switch(marg) {

 case “Monitors”:

 myinvmgr.ReplenishInventory(enmInvParts.Monitors);

 break;

 case “Keyboards”:

 myinvmgr.ReplenishInventory(enmInvParts.Keyboards);

 break;

 case “MousePads”:

 myinvmgr.ReplenishInventory(enmInvParts.Keyboards);

 break;
 default:

 break;

 }

 }

 }

 }

Figure 10.0

We’re done. There is no need to change PartsFactory or InventoryMgr. This should demonstrate that we have successfully removed all remaining coupling issues caused by the switch statement inside PartsFactory.

Conclusion

The Factory pattern is one of the most simple yet most powerful design patterns. Because of its simplicity, sometimes we overlook the subtle coupling and cohesion implications of the implementation we choose when applying the pattern. Indeed, it is not always warranted to minimize coupling to bare-bones levels and maximize cohesion to the n-th degree; however, we need to be mindful of their presence and their implications in whatever context we happen to apply this ubiquitous and extremely useful design pattern.

Product

Factory

Client

InventoryMgr

 <<abstract>> PartsFactory

 <<concrete>> MonitorInvFactory

 <<concrete>> KeyboardInvFactory

 <<interface>> IPartsInventory

 <<concrete>> MonitorInventory

 <<concrete>> KeyboardInventory

MainClass

MainClass

 <<concrete>> PartsFactory

InventoryMgr

 <<concrete>> KeyboardInventory

 <<concrete>> MonitorInventory

 <<interface>> IPartsInventory

