Alarm Clock v.1.2

Created September 13, 2001
By: David Lake

Table of Contents:
1: Introduction

2: Overview

3: Features

4: Version History

a) 1.0

i. The crappiest way to play a file…

ii. The Snooze Control.

iii. The Stop Button.

b) 1.1

i. The new and improved Snooze Control.

ii. The newer and even more improved play method.

iii. Better labeling

c) 1.2

i. A better “Open Files…” dialog.

ii. The biggest bug in the history of bugs…and I caught it!!!

d) 2.0

5: Conclusion

1: Introduction:
First off, if there are any problems getting this code to work in any way, e-mail me at:

david@lake.ca
and I will be glad to give you any help that I can, although I must confess to not having a whole lot of experience with Visual Basic-al (that’s a bit of an inside joke)

This is my first experience in the land of application development (other than lab assignments at school), so please go easy on me.

2: Overview:
This is a simple alarm clock program that was created using a combination of standard Visual Basic methods and a tiny bit of Windows API. It works by simply capturing the current system time (the call to which is located in a timer control that clicks over every 1000 ms) and comparing it to a string constructed based on whenever the user wants the alarm to go off. If the two strings match up, then the alarm goes off and a pre-defined set of events occurs. These are either:

Silent: A message box appears in the center of the screen informing the user of the current time, or

Music: Either a Microsoft Wave File or an .mp3 starts playing. The user is not informed of the current time, their only reminder is that of the playing (or played) sound.

Pretty neat, huh?

3: Features:
Rather than place a bulky and unreliable Windows Media Player control on the form, I accessed the sound files directly through the Windows API. This reduced the overall size of the application and provided a greater degree of cross-platform compatibility. The API calls involved are supposed to work within all the current versions of Windows.

The code is thoroughly documented and commented. There should be no trouble tracing through it and finding out exactly everything does. If there is any trouble, then e-mail me.

4: Version History:
a) 1.0: This was the first incarnation of the alarm clock and it pretty much sucked, although there was a certain degree of sound support (i.e. it only worked on my computer and no one else’s that I could find). Features included:

i. The crappiest way to play a file…

Separate methods for playing the sounds (i.e. I used the PlaySoundA API function call to play a .wav file and the Media Player control to play the mp3’s), which led to a bulky and oversized PlayMusic function. This was later trimmed down and optimized as best as I could

ii. The Snooze Control

Snooze control that basically pushed the alarm time string ahead by ten minutes and starts the whole thing again. There were problems.

iii. The Stop Button

Stop button that just stops any sound that is currently playing. This was later revised along with the PlayMusic function, as they worked together.

b) 1.1: This was my second attempt. The interface didn’t change at all, but the code underneath was optimized and fixed as best as I could think at the time. Some bug fixes were:

i. The new and improved Snooze Control

Fixed the snooze button so that it was only used if there was either a song playing or a song had been playing. In the previous version, the program would crash if there was no set alarm time.

ii. The newer and even more improved play method

Radically changed the way that sound was played. Basically, I consolidated the .wav and .mp3 files so that they were played using the same API function (mciSendString, in case anyone was wondering). This served to take a big load off the timer control (as the call to this function was located here) and improved overall performance. A HUGE thanks goes out to Abdullah Al-Ahdal (e-mail: a_ahdal@yahoo.com) and Planet Source Code for providing the .bas file that contains this code. I couldn’t have done it without that file.

iii. Better labeling

Re-wrote the label code on the main form to reflect the current alarm state and made it work better. Hopefully it doesn’t screw up, but I think it should work ok.

c) 1.2: This was a minor revision. It didn’t do anything spectacular except to make the selection of the file a bit user-friendlier and fix a glaring bug.

i. A better “Open Files…” dialog

Replaced my own “Open File…” dialog box that was present in versions 1.0 and 1.1 with the Windows standard “Open Files…” dialog box. My father mentioned that he couldn’t access the desktop with his music folder in his Win2000 machine (he could have, but it’s not as easy as doing it with 95/98/ME), so I replaced it and here we are. I didn’t use any special API calls to show this dialog box, I just used the Common Dialog Control (I know, I know, its an incredible waste of space). This made things a lot easier than I thought, because all the time that I spent coding the frmGetMusicFiles form was reduced to just one line and a few design properties. This move also served to reduce the overall size of the application by almost 7%, even though there was all that Common Dialog Control fluff that wasn’t being used.

ii. The biggest bug in the history of bugs…and I caught it!!!

Caught and fixed a glaring bug in the timer control. It seems that with all the timer control has to do, there were times when it would skip a second. If that second skipped over a minute (which happened a lot more than you would think) then the alarm wouldn’t go off, as it’s set to whatever hour and minute you want and exactly :00 seconds. What I did (which may seem a bit redundant) was set up a second alarm string that set the alarm time to whatever hour and minute you want and :01 seconds. A global boolean “isPlaying” made sure that the file would not be started twice. This eliminated (I hope) any chance of missing an alarm. If it’s not working quite right, let me know.

d) 2.0: I know, there’s no such thing as version 2.0 yet, but I want to plan for the future. Aside from whatever bug-fixes I run into between now and then, the one thing that I want to do is provide support for preset alarm times, like “School”, “Church”, etc. Hopefully this won’t screw things up too much.

5: Conclusion:
Hopefully, if everything works out ok, this will be the first of…more than one foray into the land of application development. Thanks for your interest in this program and God bless.

Dave Lake

david@lake.ca

“…you keep reading them, and I’ll keep writing them.”

Stan Lee, “Mallrats”

