Version 5 of the ICQ Protocol

Copyright ©2000 Henrik Isaksson Last update 30 April 2000
Contents

1. About this document

2. Document history

3. Disclaimer

4. Client to Server Packets

· CMD_ACK (10)

· CMD_SEND_MESSAGE (270)

· CMD_LOGIN (1000)

· CMD_REG_NEW_USER (1020)

· CMD_CONTACT_LIST (1030)

· CMD_SEARCH_UIN (1050)

· CMD_SEARCH_USER (1060)

· CMD_KEEP_ALIVE (1070)

· CMD_SEND_TEXT_CODE (1080)

· CMD_ACK_MESSAGES (1090)

· CMD_LOGIN_1 (1100)

· CMD_MSG_TO_NEW_USER (1110)

· CMD_INFO_REQ (1120)

· CMD_EXT_INFO_REQ (1130)

· CMD_CHANGE_PW (1180)

· CMD_NEW_USER_INFO (1190)

· CMD_UPDATE_EXT_INFO (1200)

· CMD_QUERY_SERVERS (1210)

· CMD_QUERY_ADDONS (1220)

· CMD_STATUS_CHANGE (1240)

· CMD_NEW_USER_1 (1260)

· CMD_UPDATE_INFO (1290)

· CMD_AUTH_UPDATE (1300)

· CMD_KEEP_ALIVE2 (1310)

· CMD_LOGIN_2 (1320)

· CMD_ADD_TO_LIST (1340)

· CMD_RAND_SET (1380)

· CMD_RAND_SEARCH (1390)

· CMD_META_USER (1610)

· CMD_INVIS_LIST (1700)

· CMD_VIS_LIST (1710)

· CMD_UPDATE_LIST (1720)

5. Server to Client Packets

· SRV_ACK (10)

· SRV_GO_AWAY (40)

· SRV_NEW_UIN (70)

· SRV_LOGIN_REPLY (90)

· SRV_BAD_PASS (100)

· SRV_USER_ONLINE (110)

· SRV_USER_OFFLINE (120)

· SRV_QUERY (130)

· SRV_USER_FOUND (140)

· SRV_END_OF_SEARCH (160)

· SRV_NEW_USER (180)

· SRV_UPDATE_EXT (200)

· SRV_RECV_MESSAGE (220)

· SRV_X2 (230)

· SRV_NOT_CONNECTED (240)

· SRV_TRY_AGAIN (250)

· SRV_SYS_DELIVERED_MESS (260)

· SRV_INFO_REPLY (280)

· SRV_EXT_INFO_REPLY (290)

· SRV_STATUS_UPDATE (420)

· SRV_SYSTEM_MESSAGE (450)

· SRV_UPDATE_SUCCESS (480)

· SRV_UPDATE_FAIL (490)

· SRV_AUTH_UPDATE (500)

· SRV_MULTI_PACKET (530)

· SRV_X1 (540)

· SRV_RAND_USER (590)

· SRV_META_USER (990)

6. Client to Client Communication

· Introduction

· Starting with UDP

· Switch to TCP

· The TCP Init Packet

· The TCP Message Packet

· The Message Ack Packet

· TCP Message Related #define's

· Reverse TCP Connections

· File Direct Protocol

· Chat Mode Protocol

7. Calculating the checkcode

8. Encryption

1. About this document

This is an unofficial specification, based on Magnus Ihses specification for version 2 of the ICQ protocol, Mattew Smith's MICQ, Sebastien Dault's description of the encryption and on the discussions on the icq-devel mailing list.

The Client-to-client section is written by Douglas F. McLaughlin, the author of StrICQ.

Andreas Rasmussen has provided information about the LOGIN command.

If you have any comments on the contents of this document, send them to mailto:hki@hem1.passagen.se.

To read the V2 document or join the mailing list, go to
http://www.student.nada.kth.se/~d95-mih/icq/

Any trademarks mentioned in this text belongs to their respective owner.

	Number convention

	0x12345678
	Real value in hexadecimal.

	78 56 34 12
	Hex dump value.

	(1234)
	Decimal number.

2. Document history

	2000-04-30
	Updated CMD_LOGIN and CMD_CHANGE_STATUS.

	2000-01-22
	Updated CMD_LOGIN.

	1999-12-12
	Added TCP protocol information.

	1999-10-24
	Updated CMD_NEW_USER_INFO, CMD_REG_NEW_USER and SRV_NEW_USER.

	1999-07-30
	Added this version history.
Added links from the table of contents.

3. Disclaimer

LICENSE AGREEMENT

This document and the information present herein is provided by the Author for your personal use only. You agree to the full responsibility for the results of your use of this document or the information present herein.

By using this document or the information present herein, you accept the terms of this license agreement.

THIS INFORMATION IS PROVIDED ON AN "AS IS" BASIS. THE AUTHOR MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THIS DOCUMENT AND THE INFORMATION PRESENT HEREIN. THE AUTHOR DOES NOT WARRANT, GUARANTEE OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF THE USE OF THIS DOCUMENT OR THE INFORMATION PRESENT HEREIN, IN TERMS OF THE ACCURACY, RELIABILITY, QUALITY, VALIDITY, STABILITY, COMPLETENESS, CURRENTNESS, OR OTHERWISE. THE ENTIRE RISK OF USING THE INFORMATION PRESENT IN THIS DOCUMENT IS ASSUMED BY THE USER.

IN NO EVENT WILL THE AUTHOR BE LIABLE TO ANY PARTY (i) FOR ANY DIRECT, INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF PROGRAMS OR INFORMATION, AND THE LIKE), OR ANY OTHER DAMAGES ARISING IN ANY WAY OUT OF THE AVAILABILITY, USE, RELIANCE ON, OR INABILITY TO USE THIS DOCUMENT OR THE INFORMATION PRESENT HEREIN, EVEN IF THE AUTHOR HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT, TORT, OR OTHERWISE; OR (ii) FOR ANY CLAIM ATTRIBUTABLE TO ERRORS, OMISSIONS, OR OTHER INACCURACIES IN, OR DESTRUCTIVE PROPERTIES OF ANY INFORMATION.

4. Client to server packets

The Client-to-server packets are sent using UDP to the ICQ server. Every UDP packet begins with a header as follows:

	ICQ Packet Header (client side)

	Length
	Content (if fixed)
	Designation
	Description

	2 bytes
	05 00
	VERSION
	Protocol version

	4 bytes
	00 00 00 00
	ZERO
	Just zeros, purpouse unknown

	4 bytes
	xx xx xx xx
	UIN
	Your (the client's) UIN

	4 bytes
	xx xx xx xx
	SESSION_ID
	Used to prevent 'spoofing'. See below.

	2 bytes
	xx xx
	COMMAND
	

	2 bytes
	xx xx
	SEQ_NUM1
	Starts at a random number

	2 bytes
	xx xx
	SEQ_NUM2
	Starts at 1

	4 bytes
	xx xx xx xx
	CHECKCODE
	

	variable
	xx ...
	PARAMETERS
	Parameters for the command being sent

The packets sent from the client to the server are encrypted before they are sent, unlike the packets sent from the server which are not encrypted. For more information on encryption/decryption, see Sebastien Dault's document.

SESSION_ID is a random number, chosen when the login packet is sent, and kept until you log out. This number must be the same for every packet you send, or the server will ignore them. The session id will also be sent back to you in every packet sent by the server, and this way you can tell if the packet comes from the server or is a 'spoofed' packet. (compare the number in the recieved packet to the one you've sent)

The sequence numbers are used to make sure the packets really arrive at the recipent, and only do so once. When you send a packet to the server you should recieve an acknowledgement (SRV_ACK) from the server, if you don't, you should send the packet again. If you recieve two or more packets with the same sequence number, you should ignore all but one. Likewise the server excpects you to send an acknowledgement for every packet you recieve from the server, except for the SRV_ACK packet. See SRV_ACK and CMD_ACK.

SEQ_NUM1 is set to a random number in the login packet, and then increased by one everytime you send a packet. (e.g. if the login packet has SEQ_NUM1 = 123, the next packet you send should have SEQ_NUM1 = 124.)
SEQ_NUM2 is set to 1 in the login packet, and increased by one for most (but not all) of the packets you send. (e.g. CMD_KEEP_ALIVE should always have SEQ_NUM2 = 0)

	
	CMD_ACK

0A 00 (10)

	
	This command is sent to acknowledge reciption of a packet you have recieved from the server.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

RANDOM

Random number.

Note! The sequence number in the header contains the sequence number of the (server) packet to acknowledge.

	

	CMD_SEND_MESSAGE

0E 01 (270)

	
	This command is used to send messages through the server to offline or invisible users ('Offline message').

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

RECIEVER_UIN

UIN of the user the message is sent to

2 bytes

(see below)

MESSAGE_TYPE

Type of message being sent

2 bytes

xx xx

MESSAGE_LENGTH

Message text including terminating NULL-byte

variable

xx ... 00

MESSAGE_TEXT

NULL terminated string

MESSAGE_TYPE can be one of the following:

Message types

Designation
Value
Description
MSG_TEXT

01 00

Normal text message

MSG_URL

04 00

URL message

This message consists of two parts, separated by 0xFE. First the description of the URL followed by the URL itself.

MSG_AUTH_REQ

06 00

Request authorization to add user to contact list

This message consists of five parts, separated by 0xFE. Nickname, first name, last name, email address and reason.

MSG_AUTH

08 00

Grant request to add user to contact list

MSG_USER_ADDED

0C 00

User (the recipent) has been added to contact list

This message consists of four parts, separated by 0xFE. Nickname, first name, last name and email address, in that order.

MSG_CONTACTS

13 00

Send contacts

This message consists of a number of nicknames and UINs separated by a 0xFE byte. The first part of the message is the number of contacts (nickname/UIN pairs) in the message. This number is stored in ASCII-code, and it is terminated in the same way as the other parts, with 0xFE.

	

	CMD_LOGIN

E8 03 (1000)

	
	This packet is used to log in to the server, which must be done before any of the other commands can be used, except for the ones used to register a new user.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

TIME

time(NULL), number of seconds since 1 January 1970

4 bytes

xx xx xx xx

PORT

The port you will be listening for TCP connections on

2 bytes

xx xx

PASS_LENGTH

Length of password, including NULL

variable

xx ... 00

PASSWORD

NULL terminated string containing the password

4 bytes

xx xx xx xx

X1

Unknown, usually d5 00 00 00

4 bytes

xx xx xx xx

IP

Our IP

1 bytes

xx

FLAGS_1

See below for definitions.

4 bytes

xx xx xx xx

STATUS

Status, see CMD_CHANGE_STATUS for definitions

2 bytes

xx xx

TCP_VER

TCP version, 06 00 (V6) is currently used

2 bytes

xx xx

X2

Unknown, usually 00 00

4 bytes

xx xx xx xx

X3

Unknown, usually 00 00 00 00

4 bytes

xx xx xx xx

X4

Unknown, usually 08 00 d5 00

4 bytes

xx xx xx xx

X5

Unknown, usually 50 00 00 00

4 bytes

xx xx xx xx

X6

Unknown, usually 03 00 00 00

4 bytes

xx xx xx xx

BUILD_DATE

Build date of the client. (seconds since 1970)

When the login packet has arrived at the server, assuming it is correct, you will recieve an acknowledgement (SRV_ACK) and a login reply (SRV_LOGIN_REPLY).

These are the known flags of the FLAGS_1 field:

Value
Description
0x01

Firewall (with dynamic TCP-port)

0x02

Proxy. (SOCKS5/SOCKS4)

0x04

Enable communication over TCP

	

	CMD_REG_NEW_USER

FC 03 (1020)

	
	This command is sent to the server without logging in. The UIN field of header is set to NULL. The server will acknowledge this packet and reply with a SRV_NEW_USER packet. This packet contains your new UIN, which you must log in with immediately (send a CMD_LOGIN with your new UIN and the password you have chosen). When you have logged in successfully (SRV_LOGIN_REPLY) you should use the CMD_NEW_USER_INFO command to set up basic info such as your nickname.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

PASS_LENGTH

Length of password. (9 chars is max for Mirabilis ICQ)

variable

xx ... 00

PASS

A password you want to use for the new account.

4 bytes

A0 00 00 00

UNKNOWN1

Unknown.

4 bytes

61 24 00 00

UNKNOWN2

Unknown.

4 bytes

00 00 A0 00

UNKNOWN3

Unknown.

4 bytes

00 00 00 00

UNKNOWN4

Unknown.

	

	CMD_CONTACT_LIST

06 04 (1030)

	
	This command is used to inform the server of which users you wish to recieve online/offline events for.

Parameters

Length
Content (if fixed)
Designation
Description
1 byte

xx

NUM_CONTACTS

Number of UINs in this packet

4 bytes

xx xx xx xx

UIN_1

1st UIN in your contact list.

...

...

...

...

4 bytes

xx xx xx xx

UIN_n

Last UIN in your contact list.

Note! The maximum number of users is limited to about 120 because of ICQ's maximum packet length of 450 bytes, if your contact list consists of more users, you have to send this packet multiple times.

	

	CMD_SEARCH_UIN

1A 04 (1050)

	
	This command is used to search for a user using his/her UIN.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

SEARCH_SEQ

See below.

4 bytes

xx xx xx xx

SEARCH_UIN

The UIN to search for.

	

	CMD_SEARCH_USER

24 04 (1060)

	
	Search for a user. The server responds with SRV_USER_FOUND for every user it finds and SRV_END_OF_SEARCH.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

NICK_LENGTH

Length of nickname, including NULL

variable

xx ... 00

NICK

Nickname, NULL terminated

2 bytes

xx xx

FIRST_LENGTH

Length of first name, including NULL

variable

xx ... 00

FIRST

First name, NULL terminated

2 bytes

xx xx

LAST_LENGTH

Length of last name, including NULL

variable

xx ... 00

LAST

Last name, NULL terminated

2 bytes

xx xx

EMAIL_LENGTH

Length of email address, including NULL

variable

xx ... 00

EMAIL

Email address, NULL terminated

	

	CMD_KEEP_ALIVE

2E 04 (1070)

	
	This command has to be sent to the server every two minutes. If has not been sent within two minutes, the server will assume that you are offline.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

RANDOM

Random number.

Note! SEQ_NUM2 in the header should be set to zero when sending this command.

	

	CMD_SEND_TEXT_CODE

38 04 (1080)

	
	This packet is used to send special commands to the server as text.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

LENGTH

Length of the text command, including NULL-byte.

variable

xx ...

TEXT_CODE

NULL terminated string containing of the codes below.

2 bytes

05 00

X1

Unknown, usually 05 00

Theese are the different TEXT_CODEs available:

Text code
Description
B_USER_DISCONNECTED

Disconnect from the server

B_MESSAGE_ACK

Tells the server to respond immediately, used when you have trouble connecting.

B_KEEPALIVE_ACK

Unknown, probably similar to B_MESSAGE_ACK

Note! SEQ_NUM2 in the header should be set to zero when sending this command.

	

	CMD_ACK_MESSAGES

42 04 (1090)

	
	Remove old messages from server. Usually sent when SRV_X2 is recieved.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

RANDOM

Random number.

	

	CMD_LOGIN_1

4C 04 (1100)

	
	Unknown packet sent during login. Does not appear to be used by ICQ99.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

RANDOM

Random number.

	

	CMD_MSG_TO_NEW_USER

56 04 (1110)

	
	

	

	CMD_INFO_REQ

60 04 (1120)

	
	Request basic information about a user.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

The UIN of the user you are requesting info about.

The server will respond with SRV_INFO_REPLY.

	

	CMD_EXT_INFO_REQ

6A 04 (1130)

	
	Request extended information about a user.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

The UIN of the user you are requesting info about.

The server will respond with SRV_EXT_INFO_REPLY.

	

	CMD_CHANGE_PW

9C 04 (1180)

	
	Change login password. This command is obsolete. Use CMD_META_USER instead.

	

	CMD_NEW_USER_INFO

A6 04 (1190)

	
	Send basic information about a new user being registered. This command is sent when you log in the first time using a newly obtained UIN. See CMD_REG_NEW_USER.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

NICK_LENGTH

Length of nickname, including NULL

variable

xx ... 00

NICK

Nickname, NULL terminated

2 bytes

xx xx

FIRST_LENGTH

Length of first name, including NULL

variable

xx ... 00

FIRST

First name, NULL terminated

2 bytes

xx xx

LAST_LENGTH

Length of last name, including NULL

variable

xx ... 00

LAST

Last name, NULL terminated

2 bytes

xx xx

EMAIL_LENGTH

Length of email address, including NULL

variable

xx ... 00

EMAIL

Email address, NULL terminated

1 byte

01

UNKNOWN1

Unknown

1 byte

01

UNKNOWN2

Unknown

1 byte

01

UNKNOWN3

Unknown

	

	CMD_UPDATE_EXT_INFO

B0 04 (1200)

	
	

	

	CMD_QUERY_SERVERS

BA 04 (1210)

	
	Query the server about adresses to other servers.

	

	CMD_QUERY_ADDONS

C4 04 (1220)

	
	Query the server about globally defined add-ons.

	

	CMD_STATUS_CHANGE

D8 04 (1240)

	
	Change users online status. (Away, invisible etc.)

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

STATUS

The new status. See below

Statuses

Designation
Value
Description
STATUS_ONLINE

00 00 00 00

User is online

STATUS_AWAY

01 00 00 00

User is away

STATUS_DND

13 00 00 00

Do Not Disturb

STATUS_INVISIBLE

00 01 00 00

User is invisible

STATUS_OCCUPIED

10 00 00 00

Occupied

STATUS_NA

04 00 00 00

Not Available

STATUS_CHAT

20 00 00 00

Free for chat

STATUS_DND and STATUS_NA may or may not be combined (ORed) with STATUS_AWAY, depending on which version of the ICQ client you are using.

The following flags can also be ORed with the staus to control if your client is WebAware or if your IP will be displayed.

Status flags

Designation
Value
Description
STATUSF_WEBAWARE

00 00 01 00

Your online status can be seen from the web.

STATUSF_SHOWIP

00 00 02 00

Your IP will be displayable by other clients.

	

	CMD_NEW_USER_1

EC 04 (1260)

	
	Ask for permission to add a new user.

	

	CMD_UPDATE_INFO

0A 05 (1290)

	
	Update your info in the servers user database.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

NICK_LENGTH

Length of nickname, including NULL

variable

xx ... 00

NICK

Nickname, NULL terminated

2 bytes

xx xx

FIRST_LENGTH

Length of first name, including NULL

variable

xx ... 00

FIRST

First name, NULL terminated

2 bytes

xx xx

LAST_LENGTH

Length of last name, including NULL

variable

xx ... 00

LAST

Last name, NULL terminated

2 bytes

xx xx

EMAIL_LENGTH

Length of email address, including NULL

variable

xx ... 00

EMAIL

Email address, NULL terminated

	

	CMD_AUTH_UPDATE

14 05 (1300)

	
	Update you authorization status. (i.e. do you want users to require your permission to add you to their contact lists?) Note that this does only concern the Mirabilis client, most clones allow their users to override this setting.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

AUTHORIZE

TRUE => no authorization required, FALSE => authorization required.

	

	CMD_KEEP_ALIVE2

1E 05 (1310)

	
	In earlier versions this command was sent to the server along with the CMD_KEEP_ALIVE message. Does not appear to be used by ICQ99.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

RANDOM

Random number.

	

	CMD_LOGIN_2

28 05 (1320)

	
	This command was used during login in earlier versions.

	

	CMD_ADD_TO_LIST

3C 05 (1340)

	
	Add a user to contact list. After issuing this command you will recieve user status changes for this user in addition to those on your contact list.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

User to add

	

	CMD_RAND_SET

64 05 (1380)

	
	Specify in which group you want to be available for random chat.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

RAND_GROUP

See CMD_RAND_SEARCH

Note! Your online status must be Free for Chat for others to find you.

	

	CMD_RAND_SEARCH

6E 05 (1390)

	
	Find a random user.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

RAND_GROUP

See below.

RAND_GROUP can have one of the following values:

Name
Value
General

1

Romance

2

Games

3

Students

4

20 something

6

30 something

7

40 something

8

50+

9

Man chat requesting women

10

Woman chat requesting men

11

	

	CMD_META_USER

4A 06 (1610)

	
	

	

	CMD_INVIS_LIST

A4 06 (1700)

	
	This command is used to inform the server of which users you want to be invisible to, even when you are not in invisible mode.

Parameters

Length
Content (if fixed)
Designation
Description
1 byte

xx

NUM_USERS

Number of UINs in this packet

4 bytes

xx xx xx xx

UIN_1

1st UIN in your list.

...

...

...

...

4 bytes

xx xx xx xx

UIN_n

Last UIN in your list.

Note! The maximum number of users is limited to about 120 because of ICQ's maximum packet length of 450 bytes, if your invisible list consists of more users, you have to send this packet multiple times.

	

	CMD_VIS_LIST

AE 06 (1710)

	
	This command is used to inform the server of which users you want to be able to see you when you are in invisible mode.

Parameters

Length
Content (if fixed)
Designation
Description
1 byte

xx

NUM_USERS

Number of UINs in this packet

4 bytes

xx xx xx xx

UIN_1

1st UIN in your list.

...

...

...

...

4 bytes

xx xx xx xx

UIN_n

Last UIN in your list.

Note! The maximum number of users is limited to about 120 because of ICQ's maximum packet length of 450 bytes, if your visible list consists of more users, you have to send this packet multiple times.

	

	CMD_UPDATE_LIST

B8 06 (1720)

	
	This command is used to inform the server of changes in your visible/invisible user lists.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

UIN of user to add or remove

1 byte

xx

LIST

List affected by the change, 01 - invisible, 02 - visible

1 bytes

xx

REMADD

00 - Remove user, 01 - Add user to list

5. Server to Client Packets

Every server-to-client UDP packet begins with a header as follows:

	ICQ Packet Header (server side)

	Length
	Content (if fixed)
	Designation
	Description

	2 bytes
	05 00
	VERSION
	Protocol version

	1 byte
	00
	ZERO
	Unknown

	4 bytes
	xx xx xx xx
	SESSION_ID
	Same as in your login packet.

	2 bytes
	xx xx
	COMMAND
	

	2 bytes
	xx xx
	SEQ_NUM1
	Sequence 1

	2 bytes
	xx xx
	SEQ_NUM2
	Sequence 2

	4 bytes
	xx xx xx xx
	UIN
	Your (the client's) UIN

	4 bytes
	xx xx xx xx
	CHECKCODE
	

	variable
	xx ...
	PARAMETERS
	Parameters for the command being sent

Theese packets are not encrypted in any way.
See the Client to server section for further description of the fields.

	

	SRV_ACK

0A 00 (10)

	
	Acknowledgement for a command sent to the server. Until this is recieved you should keep resending your command to the server, with a reasonable delay to avoid wasting bandwidth. The Mirabilis client resends 6 times with an interval of 10 seconds. After 6 resends a CMD_SEND_TEXT_CODE with B_MESSAGE_ACK i sent.

No parameters

The sequence numbers in the header contains the sequence numbers of the (client) packet that is being acknowledged.

	

	SRV_GO_AWAY

28 00 (40)

	
	Error message from the server. You have to disconnect and reconnect in order to continue.

No parameters

	

	SRV_NEW_UIN

46 00 (70)

	
	A new UIN, requested by CMD_REG_NEW_USER, has been reserved for you. The UIN is in the UIN field of the header. After reciption of this responce you have to log in to the server with the new UIN to complete the registration (a normal login procedure).

No parameters

	

	SRV_LOGIN_REPLY

5A 00 (90)

	
	This is sent from the server when it has recieved a CMD_LOGIN command correctly. When you recieve this command, send over your contact list and visible/invisible lists.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

8C 00 00 00

X1

Unknown (dec: 140)

2 bytes

F0 00

X2

Unknown (dec: 240)

2 bytes

0A 00

X3

Unknown (dec: 10)

2 bytes

0A 00

X4

Unknown (dec: 10)

2 bytes

05 00

X5

Unknown (dec: 5, version?)

4 bytes

xx xx xx xx

IP

Your IP

4 bytes

xx xx xx xx

X6

Unknown

	

	SRV_BAD_PASS

64 00 (100)

	
	The password in the login packet was invalid. If you're certain it is corrent, check the length of the password and make sure it's NULL terminated.

No parameters

	

	SRV_USER_ONLINE

6E 00 (110)

	
	A user on your contact list has changed his/her status so that he/she has became visible to you. (i.e. changed from offline or invisible to something different.)

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

UIN of the user who changed status

4 bytes

xx xx xx xx

IP

The user's IP address

4 bytes

xx xx xx xx

PORT

The port the user is listening for connections on

4 bytes

xx xx xx xx

REAL_IP

User's real IP address

1 byte

xx

X1

Unknown, usually 04

4 bytes

xx xx xx xx

STATUS

User's new status, see CMD_STATUS_CHANGE

4 bytes

xx xx xx xx

X2

Unknown, possible the user's version

4 bytes

xx xx xx xx

X3

Unknown

4 bytes

xx xx xx xx

X4

Unknown

4 bytes

xx xx xx xx

X5

Unknown

4 bytes

xx xx xx xx

X6

Unknown

4 bytes

xx xx xx xx

X7

Unknown

	

	SRV_USER_OFFLINE

78 00 (120)

	
	A user on your contact list has changed his/her status to offline.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

UIN of the user who changed status

	

	SRV_QUERY

82 00 (130)

	
	Response to CMD_QUERY_SERVES and CMD_QUERY_ADDONS.

	

	SRV_USER_FOUND

8C 00 (140)

	
	A user matching the search criteria in a previously sent CMD_SEARCH_USER or CMD_SEARCH_UIN command has been found. If several users were found, you will recieve a packet for every one of them.

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

UIN of the user found

2 bytes

xx xx

NICK_LENGTH

Length of user's nickname

variable

xx ... 00

NICK

User's nickname

2 bytes

xx xx

FIRST_LENGTH

Length of user's first name

variable

xx ... 00

FIRST

User's first name

2 bytes

xx xx

LAST_LENGTH

Length of user's last name

variable

xx ... 00

LAST

User's last name

2 bytes

xx xx

EMAIL_LENGTH

Length of the user's email address

variable

xx ... 00

EMAIL

User's email address

1 byte

xx

AUTHORIZE

User's authorization status, see below

AUTHORIZE can contain either 00 or 01.
00 means that your client should request authorization before adding this user to the contact list.
01 means that authorization is not required to add him/her to your contact list.

	

	SRV_END_OF_SEARCH

A0 00 (160)

	
	No more users could be found, or too many user was found.

Parameters

Length
Content (if fixed)
Designation
Description
1 byte

xx

TOO_MANY

The search genarated too many hits

If TOO_MANY is 00, you have recieved all matching users in the database. If it is 01, there are more users matching your query, but theese are not sent. Currently the limit is at 40 users.

	

	SRV_RECV_MESSAGE

DC 00 (220)

	
	This is sent during login, if there are messages for you at the server. (often referred to as 'offline messages')

Parameters

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

UIN of the sender

2 bytes

xx xx

YEAR

The year the message was sent

1 byte

xx

MONTH

The month the message was sent

1 byte

xx

DAY

Day of month

1 byte

xx

HOUR

Hour the message was sent

1 byte

xx

MINUTE

Minutes

2 bytes

xx xx

MESSAGE_TYPE

What kind of message it is (see below)

2 bytes

xx xx

MESSAGE_LENGTH

Length of the text (including NULL)

variable

xx ... 00

MESSAGE_TEXT

Message text

MESSAGE_TYPE can have one of the following values:

Message types

Designation
Value
Description
MSG_TEXT

01 00

Normal text message

MSG_URL

04 00

URL message

This message consists of two parts, separated by 0xFE. First the description of the URL followed by the URL itself.

MSG_AUTH_REQ

06 00

Request authorization to add user to contact list

This message consists of five parts, separated by 0xFE. Nickname, first name, last name, email address and reason.

MSG_AUTH

08 00

Grant request to add user to contact list

MSG_USER_ADDED

0C 00

User (the recipent) has been added to contact list

This message consists of four parts, separated by 0xFE. Nickname, first name, last name and email address, in that order.

MSG_CONTACTS

13 00

Send contacts

This message consists of a number of nicknames and UINs separated by a 0xFE byte. The first part of the message is the number of contacts (nickname/UIN pairs) in the message. This number is stored in ASCII-code, and it is terminated in the same way as the other parts, with 0xFE.

Sample URL message dump:

0000: 78 56 34 12 CF 07 04 0E 0D 07 04 00 16 00 4D 69 xV4...........Mi

0010: 72 61 62 69 6C 69 73 FE 77 77 77 2E 69 63 71 2E rabilis.www.icq.

0020: 63 6F 6D 00 com.

The coloured parts belong is the MESSAGE_TEXT. The green numbers shows the URL description ('Mirabilis'). Blue numbers belongs to the URL is self. The red byte (FE) separates theese two strings, and finally the yellow byte (00) is the NULL termination.

The black part of the message contains this information:
UIN: 0x12345678
Date: 1999-04-14
Time: 13:07
Type: MSG_URL
Length: 22 bytes

	

	SRV_UPDATE_SUCCESS

E0 01 (480)

	
	CMD_UPDATE_INFO successfully changed your user info.

	

	SRV_UPDATE_FAIL

EA 01 (490)

	
	CMD_UPDATE_INFO has failed.

	

	SRV_MULTI

12 02 (530)

	
	Several packets sent at once. The server seems to use this packet whenever it has more than one packet to send to you.

Parameters

Length
Content (if fixed)
Designation
Description
1 byte

xx

NUM_PACKETS

Number of packets

2 bytes

xx xx

SIZE_1

Size of the first packet

variable

05 00 ...

PKT_1

The first packet

2 bytes

xx xx

SIZE_2

Size of the second packet

variable

05 00 ...

PKT_2

The second packet

...

...

...

...

2 bytes

xx xx

SIZE_N

Size of last packet

variable

05 00 ...

PKT_N

The last packet

The CHECK fields of the included packets are all set to NULL. Acknowledgement needs to be done only to the SRV_MULTI, not to the encapsulated packets.

	

	SRV_META_USER

DE 03 (990)

	
	Reply to CMD_META_USER.

Parameters

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

SUBCMD

Subcommand, see below for explanation

1 byte

xx

RESULT

Result of the function, success or failure. See below

variable

xx ...

DATA

The data you requested, See below.

RESULT

0x0A - Success
0x32 - Failure

SUBCMD and DATA

· META_USER_FOUND - 9A 01 (xx)

DATA for subcommand META_USER_FOUND

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

The user's UIN

2 bytes

xx xx

NICK_LENGTH

Length of nickname

variable

xx ... 00

NICK

Nickname

2 bytes

xx xx

FIRST_LENGTH

Length of first name

variable

xx ... 00

FIRST

First name

2 bytes

xx xx

LAST_LENGTH

Length of last name

variable

xx ... 00

LAST

Last name

2 bytes

xx xx

EMAIL_LENGTH

Length of email address

variable

xx ... 00

EMAIL

Email

1 byte

xx

AUTHORIZE

Authorization status

2 bytes

xx xx

X2

Unknown

4 bytes

xx xx xx xx

X3

Unknown

· AUTHORIZE can be either 0x00 or 0x01:
0x00 - This user wants you to request his/her authorization before adding to the list.
0x01 - This user does not want you to ask him/her for permission before adding him/her to your list.

· META_ABOUT - E6 00 (xx)

DATA for subcommand META_ABOUT

Length
Content (if fixed)
Designation
Description
2 bytes

xx xx

ABOUT_LENGTH

Length of about string

variable

xx ... 00

ABOUT

About string

· META_USER_INFO - C8 00 (xx)

DATA for subcommand META_USER_INFO

Length
Content (if fixed)
Designation
Description
4 bytes

xx xx xx xx

UIN

The user's UIN

2 bytes

xx xx

NICK_LENGTH

Length of nickname

variable

xx ... 00

NICK

Nickname

2 bytes

xx xx

FIRST_LENGTH

Length of first name

variable

xx ... 00

FIRST

First name

2 bytes

xx xx

LAST_LENGTH

Length of last name

variable

xx ... 00

LAST

Last name

2 bytes

xx xx

PRIMARY_LENGTH

Length of primary email address

variable

xx ... 00

PRIMARY_EMAIL

Primary email address

2 bytes

xx xx

SECONDARY_LENGTH

Length of secondary email address

variable

xx ... 00

SECONDARY_EMAIL

Secondary email address

2 bytes

xx xx

OLD_LENGTH

Length of old email address

variable

xx ... 00

OLD_EMAIL

Old email address

2 bytes

xx xx

CITY_LENGTH

Length of city

variable

xx ... 00

CITY

City

2 bytes

xx xx

STATE_LENGTH

Length of state

variable

xx ... 00

STATE

State

2 bytes

xx xx

PHONE_LENGTH

Length of phone number

variable

xx ... 00

PHONE

Phone number

2 bytes

xx xx

FAX_LENGTH

Length of fax number

variable

xx ... 00

FAX

Fax number

2 bytes

xx xx

STREET_LENGTH

Length of street address

variable

xx ... 00

STREET

Street address

2 bytes

xx xx

CELL_LENGTH

Length of cell phone number

variable

xx ... 00

CELLULAR

Cellular phone number

4 bytes

xx xx xx xx

ZIPCODE

Zip (postal) code.

2 bytes

xx xx

COUNTRY

Country code

1 byte

xx

TIMEZONE

Time zone

1 byte

xx

AUTHORIZE

Authorization status

1 byte

xx

WEBAWARE

Show the user's online status on the web

1 byte

xx

HIDEIP

Don't show the user's IP

· AUTHORIZE can be either 0x00 or 0x01:
0x00 - This user wants you to request his/her authorization before adding to the list.
0x01 - This user does not want you to ask him/her for permission before adding him/her to your list.

6. Client to Client Communication

Written By: Douglas F. McLaughlin

Introduction

This text will hopefully help explain a lot of the details of ICQ's TCP protocol version 2 (v2). Not all available codes and packets have been completely deciphered, however, these packets are VERY rare and therefore hard to intuit a specific meaning.

First of all, this text would not be possible were it not for the help and hard work of a few other people. A small portion of the DEFINEs are based upon work done by Matt Smith author of micq. Most of the basic format of the TCP Message and Chat packets were worked out by the author of Licq (whose name I can't remember right now.) The basis for the TCP File Direct packets comes from the source code icqfile.cpp. This document and the final meshing of all this information into one protocol was done by Douglas F. McLaughlin author of STRICQ for the Amiga computer. (And Mirabilis said it couldn't be done!) Please do not spread this text without applying full credit to its author and the author's sources as mentioned in the paragraph.

Finally, this document assumes a good working knowledge of opening and using TCP sockets and how to manage multiple open sockets at once. This includes how to use listen() sockets.

Starting with UDP

To begin working with TCP, you must start before your client ever logs into the ICQ server. At the same time as the UDP socket is created, you need to also create a listen()ing TCP socket and obtain its IP and port for sending with the initial login packet sent via UDP. Your initial IP can be obtained by using gethostname() and then gethostbyname(). The PC ICQ clients always provide the client's LAN IP in favor of any ISP provided IP. Also be sure to set the client to client flag to 0x04 in the login packet so that other clients will know that your client is TCP capable.

 ULONG TCP_MsgPort; /* Port your client will accept TCP connections on. */

 char Password[8]; /* Password, max 8 characters, case sensitive. */

 ULONG X1; /* Unknown. Use 0x00000000 for v2. */

 ULONG TCP_MsgIP; /* IP Address your client will accept TCP connections on. */

 UBYTE TCP_Flag; /* Is your client TCP capable? 0x04 = Yes, 0x06 = No. */

 ULONG Status; /* Your client's status at login. See defines. */

 ULONG TCP_Ver; /* The version of the TCP protocol used by the client. */

 UWORD Seq_Login; /* One up for each login packet sent. */

 ULONG X4; /* Unknown. Use 0x00000000 for v2. */

 ULONG X5; /* Unknown. For best results use 0x007300D9 with v2. */

Before moving too far along, it must be noted that each type of connection creates its own listen()ing socket. i.e. Message, Chat, and File connections will each have their own dedicated listener. STRICQ follows the same convention as the PC client in that the Message socket is created at 'go online' time and the other two types are only created when that event occurs. A chat listen socket is created only when someone requests a chat, the same for a file send/receive.

Next we move to the S_USER_ONLINE (0x006E) packet. The important information contained in this packet are the IP, Port, and TCP flag fields. The IP and Port are obviously necessary for making a direct TCP connection. The IP address is the IP that the ICQ server has extracted from the initial login UDP packet header NOT the IP in the login packet itself. The Real IP is the IP provided by the client in the login packet, most often this is just a copy of the first IP, however, if the client found a LAN address, this will be the client's LAN IP. Use the one byte TCP flag to determine whether a message packet should be sent via TCP or UDP. If the flag is 0x04, attempt a TCP connect, otherwise send the message via UDP to the server for final delivery as an online message. Usually, if the client is not TCP capable, then some kind of firewall/proxy is involved that blocks TCP connections.

 ULONG UIN; /* The UIN of the user that is online. */

 ULONG IP; /* The IP address of the client (LAN External.) */

 ULONG Port; /* The Port to connect() with for sending messages. */

 ULONG RealIP; /* The actual IP of the client machine (LAN Internal.) */

 UBYTE TCP_Flag; /* TCP Flag, 0x04 = TCP Capable, 0x06 = Do not use TCP. */

 ULONG Status; /* The status of the user at login. */

 ULONG TCP_Ver; /* The version of the TCP protocol used by the client. */

Switch to TCP

Once the user has entered a message to be sent to another person and the client determines the receiver is TCP capable and this is the first message sent to the receiver, a TCP connection is to be initiated. The first order of business is to use the IP:Port from the online packet and attempt a connect().

The TCP Init Packet

After a successful connect(), the TCP Init packet is sent that sends some needed information and basically just says, "Hello." Since we are assuming it is our client sending the first message and performed the connect(), it falls upon our end to start the ball rolling. The following packet is a general TCP Init packet and is sent for ALL types of sockets, Message, Chat, and File.

 UBYTE Ident; /* Always 0xFF. */

 UWORD Version; /* Version of the TCP protocol used. */

 UWORD Revision; /* Revision of the TCP protocol version (Mac clients.) */

 ULONG TCP_MsgPort; /* Port of the client's message listen() socket. This is

 /* sent ONLY for message connects, otherwise NULL. */

 ULONG UIN; /* User's UIN. */

 ULONG TCP_MsgIP; /* IP address (LAN External.) */

 ULONG TCP_RealIP; /* IP address (LAN Internal.) */

 UBYTE TCP_Flag; /* TCP capable flag again, 0x04 = Yes, 0x06 = No. */

 ULONG TCP_ChatFilePort; /* Port of the client's chat/port listen() socket. This

 /* is sent only for chat/file connects, otherwise NULL. */

After any TCP packet is built, the length of the packet is sent first followed by a second send() of the packet itself. The easiest way to read this from the socket is to first read with a two-byte buffer, then perform a second read with a buffer size equal to the value retrieved in the first read. Don't forget that TCP is 'sizeless', you could only receive half of your packet, or more than one packet at one time, this is why sending the actual packet size first is so important. I leave it as an exercise of the reader how best to read the packets from the socket.

The TCP Message Packet

No reply will be sent from the remote end to a TCP Init packet. Now, assuming we are sending a simple message, the following message packet is sent containing the actual message typed by our user.

 ULONG UIN; /* Local UIN. */

 UWORD Version; /* TCP protocol version being used. */

 UWORD Command; /* Command. Always 0x07EE. See #DEFINEs. */

 UWORD X1; /* Always 0x0000. */

 ULONG UIN; /* Local UIN. Just in case you missed it the first time. */

 UWORD Type; /* Message type. See #DEFINEs. */

 UWORD MsgLen; /* Length of message. Be prepared to accept any size. */

 char Message[]; /* The message text. */

 ULONG TCP_MsgIP; /* LAN External IP. */

 ULONG TCP_RealIP; /* LAN Internal IP. */

 ULONG TCP_MsgPort; /* Port of the current message socket. */

 UBYTE TCP_Flag; /* TCP Capable flag again. */

 UWORD TCP_Status; /* The client's status. See #DEFINEs. */

 UWORD MsgCommand; /* Message command. Usually 0x0010. See #DEFINEs. */

For a Chat Request packet ONLY, also add the following:

 UWORD SessionLen; /* Length of the Chat_Session text. */

 char Chat_Session[]; /* See the Chat Mode section for description. */

 UWORD Chat_RevPort; /* See the Chat Mode section for description. */

 UWORD Chat_X2; /* Always 0x0000, padding for port. */

 ULONG Chat_Port; /* See the Chat Mode section for description. */

For a FileDirect Request packet ONLY, also add the following:

 UWORD File_RevPort; /* Always 0x0000 in the message packet. */

 UWORD File_X3; /* Always 0x0000, padding for the port. */

 UWORD FileNameLen; /* Length of the filename text. */

 char File_Name[] /* Name of the file being sent or a file count, '5 files,' if

 /* more than one file is being sent. */

 ULONG File_Size; /* The total size in bytes of all files being sent. */

 ULONG File_Port; /* Always 0x00000000 in the message packet. */

Finally, for all packets add the following:

 ULONG TCP_Sequence; /* The first TCP packet sent after program startup will have

 the sequence 0xFFFFFFFE. The sequence is then decremented

 by one for EVERY TCP packet sent AND received regardless of

 who the sender or receiver is and does not include ACK

 packets. */

The Message Ack Packet

Once the remote client receives the TCP Message packet and the packet was correctly formatted, an ACK packet will be sent. The PC client's message window will not go away and the little face window will continue to spin until this ACK packet is received back from the remote client. The ACK packet is almost exactly the same as the received packet with several important changes.

 ULONG UIN; /* Local UIN. */

 UWORD Version; /* TCP protocol version being used. */

 UWORD Command; /* Commands. Always 0x07DA. See #DEFINEs. */

 UWORD X1; /* Always 0x0000. */

 ULONG UIN; /* Local UIN. Just in case you missed it the first time. */

 UWORD Type; /* Message type being ACK'd. See #DEFINEs. */

 UWORD MsgLen; /* Length of auto-reply. Be prepared to accept any size. */

 char Message[]; /* The auto-reply text. */

 ULONG TCP_MsgIP; /* LAN External IP. */

 ULONG TCP_RealIP; /* LAN Internal IP. */

 ULONG TCP_MsgPort; /* Port of the current message socket. */

 UBYTE TCP_Flag; /* TCP Capable flag again. */

 UWORD TCP_Status; /* The client's status. See #DEFINEs. */

 UWORD MsgCommand; /* Message command. Usually 0x0000. See #DEFINEs. */

For a Chat Request ACK packet ONLY, also add the following:

 UWORD SessionLen; /* Length of the Chat_Session text. */

 char Chat_Session[]; /* See the Chat Mode section for description. */

 UWORD Chat_RevPort; /* See the Chat Mode section for description. */

 UWORD Chat_X2; /* Always 0x0000, padding for port. */

 ULONG Chat_Port; /* See the Chat Mode section for description. */

For a FileDirect Request ACK packet ONLY, also add the following:

 UWORD File_RevPort; /* Port of the FileDirect listen() socket in network order. */

 UWORD File_X3; /* Always 0x0000, padding for the port. */

 UWORD FileNameLen; /* Always 0x0001. */

 char File_Name[] /* Always 0x00. */

 ULONG File_Size; /* Always 0x00000000. */

 ULONG File_Port; /* Port of the FileDirect listen() socket in intel order. */

Finally, for all packets add the following:

 ULONG TCP_Sequence; /* The TCP Sequence of the message being ACK'd. */

Here is a list of changes or items to copy while creating the ACK packet:

1. The Message Command changes from 0x07EE to 0x07DA.

2. The Message Type is copied from the original message packet.

3. Any configured Auto-Reply will be sent with this packet.

4. The Message Command Type changes from 0x0010 to 0x0000.

5. If the receiver refuses the request (Chat or File) the TCP_Status field will be set to 0x0001.

6. The File ports are sent as NULL in the original packet and actually filled in to the ACK packet by the receiver. For Chat port handling, see the Chat Mode description.

7. The Filename of a file send packet is set to NULL for the ACK.

8. The Filesize of a file send packet is set to NULL for the ACK.

9. The TCP Message Sequence is copied from the original message packet.

TCP Message Packet Related #defines

/* TCP Commands */

#define TCP_CANCEL 0x07D0 /* 2000 TCP cancel previous file/chat request */

#define TCP_ACK 0x07DA /* 2010 TCP acknowledge message packet */

#define TCP_MESSAGE 0x07EE /* 2030 TCP message */

/* TCP Message Types */

#define MSG_MSG 0x0001 /* 0001 Used to send a normal message */

#define MSG_CHAT 0x0002 /* 0002 Used to initiate a Chat session */

#define MSG_FILE 0x0003 /* 0003 Used to initiate a FileDirect session */

#define MSG_URL 0x0004 /* 0004 Used to send a URL message */

#define MSG_REQ_AUTH 0x0006 /* 0006 Used to request authorization to add to contact list */

#define MSG_DENY_AUTH 0x0007 /* 0007 Used to deny authorization to add to contact list */

#define MSG_GIVE_AUTH 0x0008 /* 0008 Used to grant authorization to add to contact list */

#define MSG_ADDED 0x000C /* 0012 Used to notify that your UIN was added to a contact list */

#define MSG_WEB_PAGER 0x000D /* 0013 Used to receive a web pager message from the white page */

#define MSG_EMAIL_PAGER 0x000E /* 0014 Used to receive an EMail message from UIN@pager.mirabilis.com */

#define MSG_ADDUIN 0x0013 /* 0019 Used to send UINs from one client to another */

#define MSG_GREETING 0x001A /* 0026 Used to send a greeting card */

#define MSG_READAWAY 0x03E8 /* 1000 Used to retrieve a clients Away message */

#define MSG_READOCCUPIED 0x03E9 /* 1001 Used to retrieve a clients Occupied message */

#define MSG_READNA 0x03EA /* 1002 Used to retrieve a clients Not Available msg */

#define MSG_READDND 0x03EB /* 1003 Used to retrieve a clients Do Not Disturb msg*/

#define MSG_READFFC 0x03EC /* 1004 Used to retrieve a clients Free For Chat msg */

#define MSGF_MASS 0x0800 /* 2048 This message was sent to more than one UIN. This is a flag and is

 OR'd with one of the above */

/* TCP Message Command Types */

#define TCP_MSG_AUTO 0x0000 /* TCP message ACK and Auto-Reply */

#define TCP_MSG_REAL 0x0010 /* TCP message */

#define TCP_MSG_LIST 0x0020 /* TCP message sent to the contact list */

#define TCP_MSG_URGENT 0x0040 /* TCP message sent urgently */

/* The following are flags and are OR'd with the above Command Types */

#define TCP_MSGF_S_INVISIBLE 0x0080 /* The message sender is Invisible */

#define TCP_MSGF_S_AWAY 0x0100 /* The message sender is Away */

#define TCP_MSGF_S_OCCUPIED 0x0200 /* The message sender is Occupied */

#define TCP_MSGF_S_NA 0x0800 /* The message sender is Not Available */

#define TCP_MSGF_S_DND 0x1000 /* The message sender is Do Not Disturb */

/* TCP Message Status' */

#define TCP_STAT_ONLINE 0x0000

#define TCP_STAT_REFUSE 0x0001

#define TCP_STAT_AWAY 0x0004

#define TCP_STAT_OCCUPIED 0x0009

#define TCP_STAT_DND 0x000A

#define TCP_STAT_NA 0x000E

Other Forms of the TCP Message Packet

The TCP Cancel packet is formatted just like a normal message, file, or chat packet. It is sent if the user presses the cancel button after sending the message, file, or chat message and before the receiving end has sent an ACK packet. A cancel packet will have all its fields set to NULL, no text or port information will be sent. The Message Type will be the same as the original message and the Message Command Type will be 0x0010. Also, the TCP Message Sequence will be the same as the original message.

The MSG_READxxx Message types are ONLY received when the local client is in that particular mode. The Win95 client can only send one Message Type at a time depending upon the status of the client the message is being read from. What this means is that if your local client is in AWAY status mode, you will ONLY receive a message type of 0x03E8. Your client's response when receiving one of these packets is to merely grab the configured message and send it with the ACK. The PC clients do NOT notify the user when one of these messages are received.

Reverse TCP Connections

Before going into Chat and File negotiation, one more very important aspect of TCP connection negotiation involves what I call the Reverse TCP connection. This is a UDP packet containing IP and Port information that is sent when client A wants to connect to client B, but for some reason, be it a firewall or whatever, the connect() failed. Here is the breakout of the Reverse TCP connect UDP packet as created by the sender.

#define TCP_REQUEST 0x015E

 UWORD UDP_Ver; /* Always 0x0002, UDP Version. */

 UWORD UDP_Cmd; /* 0x015E TCP_REQUEST packet. */

 UWORD UDP_Seq; /* UDP packet Sequence. */

 ULONG UIN; /* Receiver's UIN. */

 ULONG Remote_UIN; /* Remote UIN of requester. */

 ULONG IP; /* Remote client's LAN External IP. */

 ULONG Port; /* listen() Port in INTEL order to connect() with. */

 UBYTE TCP_Flag; /* Always 0x04. TCP Capable flag again. */

 ULONG Port2; /* Another Port in INTEL order. Not sure what this is for. */

 ULONG Port3; /* listen() Port in INTEL order to connect() with, again. */

 UWORD TCP_Ver; /* TCP Protocol version of sender. */

The receiver will receive the above packet with this additional data:

 ULONG X1; /* Always 0x00000000. Unknown. */

 ULONG X2; /* Always 0x00000000. Unknown. */

This is the packet that client A builds and sends to client B via the server using UDP. Once client B receives this packet from the server it will have 2 ULONGs of 0x00000000 appended to the end of the packet making it 8 bytes larger than what the sender sent. I have never seen anything other than all NULLs for these extra bytes at the receiver end.

Here is the logic flow:

1. User A types in a message to send to user B.

2. Client A attempts to connect() with client B and fails.

3. Client A builds the TCP_REQUEST packet and sends to the server.

4. Client B receives the TCP_REQUEST packet with client A's IP:Port.

5. Client B attempts to connect() to client A and succeeds.

6. Client B sends the TCP Init packet to client A.

7. Client A sends the message typed by user A in step 1.

8. User B reads the message.

The client that performs a successful connect() (client B) sends the TCP Init packet. After that, packet flow resumes as normal just as if client A had actually performed the connect().

The flow is essentially the same for Chat and File connections with a few small changes. In the above example, client B knows the Reverse TCP connect is for an incoming message because client B did not ACCEPT anything from client A. This is different for Chat and File. Like so:

1. User A requests to chat (or send a file) with user B.

2. User B accepts the request of user A and client B sends the necessary IP:Port information along with the Message ACK packet back to client A.

3. Client A attempts a connect() to the supplied IP:Port and fails.

4. Client A builds the TCP_REQUEST packet and sends to the server.

5. Client B receives the TCP_REQUEST packet with client A's IP:Port.

6. Client B attempts to connect() to client A and succeeds.

7. Client B sends the TCP Init packet to client A.

8. Client A sends the first actual Chat or File Init packet to client B.

9. Client B responds with the appropriate next packet.

In this example, client B knows what to expect because the Chat or File Message packet has already arrived and been accepted by the user.

File Direct Protocol

After following the above described methods to negotiate, open, and send the TCP Init packet, there are only seven packet types associated with the File Direct Protocol. The first byte of the packets ranges from 0x00 to 0x06. The client sending the file(s) starts with packet 0x00, the receiver replies with packet 0x01, sender sends 0x02, receiver sends 0x03. Packets 0x04 and 0x05 are special packets and can be sent by either client at ANY TIME during the transfer. Packet 0x06 contains the actual 2048 bytes of the file being sent. If more than one file is to be sent, after each file is finished and more files remain, the sender will again send packet 0x02 and the receiver will reply with 0x03. Here are the steps to send two files:

S = Sender, R = Receiver.

S:0x00

R:0x01

S:0x02

R:0x03

S:0x06 (As many times to transfer the file as needed.)

S:0x02

R:0x03

S:0x06 (Again, as many times as necessary.)

S:Close the file direct socket.

 Here are the packet break outs:

UBYTE 0x00 Packet.

DWORD 0x00000000 X1 Unknown.

DWORD Total number of all files to be sent.

DWORD Total bytes of all files to be sent.

DWORD Sender's speed of transfer. 0x00 to 0x64 where 0x00 = PAUSE and 0x64 =

 No packet delay. Each count represents a .05 second delay where 0x63

 is a .05 second delay, 0x62 is a .10 second delay, 0x61 is a .15

 second delay, etc. before sending the next packet.

WORD Length of Nick plus NULL.

STRING Sender's Nick.

UBYTE 0x01 Packet.

DWORD Receiver's speed.

WORD Length of Nick plus NULL.

STRING Receiver's Nick.

UBYTE 0x02 Packet.

UBYTE 0x00 X1 Unknown.

WORD Length of filename.

STRING Name of next file to be sent.

WORD Length of text. Always 0x01.

STRING Text. Unknown. Always just the NULL.

DWORD Size of the next file to be sent.

DWORD 0x00000000 X2 Unknown.

DWORD Sender's speed. (Yes, again...)

UBYTE 0x03 Packet.

DWORD Size of file on receiver's end. Any number here other than

 0x00000000 will cause the sender to skip the specified number of

 bytes before sending the first packet. Used to implement file

 transfer resume.

DWORD 0x00000000 X1 Unknown.

DWORD Receiver's speed. (Yes, again...)

UBYTE 0x04 Packet.

DWORD Possibly the current file number being transfered. Upon receipt of

 this packet the sender will stop sending the current file and

 either start on the next file or close the socket.

UBYTE 0x05 Packet.

DWORD Change speed. Can be sent by either client at any time during a

 file transfer.

UBYTE 0x06 Packet.

... From 1 to 2048 bytes of the file being transferred. The client

 should always send 2048 bytes of the file until the final packet.

Chat Mode Protocol

User to user chat mode or single-chat is much more complicated than anything else in the ICQ protocol. Add in multi-chat and the whole process becomes down right convoluted. It has taken this author several months to work out just how the whole framework of single-chat and multi-chat all meshed together. After much study it finally became clear that the listen() port used was key to understanding the whole process. It turns out that single-chat is actually a striped down multi-chat, not, as was originally thought, multi-chat being a special case of, or built on top of, single-chat.

As stated, the listen() port is key as it controls who connects with whom and whether or not the chat mode is single or multi. From here on out, a “Chat Session” will refer two or more clients connected in such a way that the sent and received text from all members will be seen within a single window. Each chat listen() port controls its own chat session. In other words, each chat session will have exactly one chat listen() port no matter how many users are participating in the chat session.

To initiate single-chat mode, a user requests another user to enter chat. The requester's client will create a chat listen() port at this time, however, it will not be passed to the receiver in the message packet. (This is the listen() port used if someone else wants to join this session.) Next, the receiver accepts and the receiver's client opens a new chat session listen() socket and passes its port in the message ACK back to the requester. The requester's client then attempts a connect() on that port. The connection is made, the initial setup packets are passed back and forth and single-chat mode is entered.

Here is the chat mode section of the message packet as sent by the requester:

 UWORD SessionLen; /* Always 0x0001 for single-chat. */

 char Chat_Session[]; /* Always 0x00 for single-chat. */

 UWORD Chat_RevPort; /* Always 0x0000 in the message packet. */

 UWORD Chat_X2; /* Always 0x0000, padding for port. */

 ULONG Chat_Port; /* Always 0x0000 in the message packet. */

Here is the chat mode section of the message ACK packet:

 UWORD SessionLen; /* Always 0x0001 in the ACK packet. */

 char Chat_Session[]; /* Always 0x00 in the ACK packet. */

 UWORD Chat_RevPort; /* The chat listen() port in network order. */

 UWORD Chat_X2; /* Always 0x0000, padding for port. */

 ULONG Chat_Port; /* The chat listen() port in intel order. */

The first method to initiate multi-chat mode starts when a user that is already in single-chat session (as described above) requests another user to join the chat session that is already in progress. The initial message packet will contain a comma separated list of all users already in the chat session, i.e. “User1, User2, User3”, and port of the listen() socket that was created when the requester's client first sent/received a chat request message packet. Next, the receiver accepts and the receiver's client opens a chat listen() socket and its port is passed back in the ACK packet. After sending the message ACK packet, the receiver then attempts a connect() on the port passed in the message packet. The connection is made and the initial setup packets are passed back and forth. In these setup packets, the requester's client will pass some information on the other clients in the chat session. This information allows the receiver's client to attempt connect()s with those other users in the chat session. Once all the connections are made and the setup packets are passed between the receiver's client and the other members of the chat session, a multi-chat session is established between all users.

Here is the chat mode section of the message packet as sent by the requester:

 UWORD SessionLen; /* Length of the Chat_Session text. */

 char Chat_Session[]; /* Comma separated list of all those in the session. */

 UWORD Chat_RevPort; /* Chat listen() port for this session in network order. */

 UWORD Chat_X2; /* Always 0x0000, padding for port. */

 ULONG Chat_Port; /* Chat listen() port for this session in intel order. */

Here is the chat mode section of the message ACK packet:

 UWORD SessionLen; /* Always 0x0001 in the ACK packet. */

 char Chat_Session[]; /* Always 0x00 in the ACK packet. */

 UWORD Chat_RevPort; /* Chat listen() port for this session in network order. */

 UWORD Chat_X2; /* Always 0x0000, padding for port. */

 ULONG Chat_Port; /* Chat listen() port for this session in intel order. */

The next method used to enter into multi-chat is when a user requests to chat with a receiver that is already in a chat session. In this instance, the chat portion of the message packet will be used in the exact same manner as if initiating a normal single-chat session. The requesting client does not know or care that the receiver is already participating in a chat session. Once the receiver receives the chat request, the user selects the join option and chooses a chat session already in progress. At this point, instead of the receiving client making a new chat listen() socket, it passes the port of the chat listen() socket previously created when the first chat session was initiated. (Now, if the receiving user had NOT chosen the join option, a new listen() socket would be created and a single-chat session would result with the receiver having two chat windows open at once.) When the requesting client receives the ACK packet, it attempts a connect() on that port. After the connect succeeds, the chat initialization packets are passed back and forth. At this point the requesting client learns of the other clients also in the chat session and attempts to connect() with each of the other clients. After all this a multi-chat session is in progress.

Finally, the last case is where both the requester and receiver are both in a chat session already. The PC ICQ clients do not allow for the merging of two already in progress chat sessions. If the requesting user selects the Join option, the receiver will not be given the Join option, and if the requester does not select Join, then the receiver is allowed the Join option. Then one of the above three cases will be the resulting method used to initiate a chat session.

Here are the chat initialization packets in detail. There are three packets passed during the initialization phase. The client that performed the connect() will send the first packet (with the exception of when a Reverse TCP Connect is used as stated above.) The receiver will respond with the second packet, and the requester sends the third and final packet. At this point the socket becomes a character stream. That portion of the chat mode will be described later.

First chat packet:

 ULONG HandShake; /* Always 0x00000064. ICQ99b uses 0x00000065. */

 ULONG HiVersion; /* Negative of the TCP protocol version. V2 = 0xFFFFFFFE */

 ULONG UIN; /* Local UIN. */

 UWORD NickLen; /* Length of the nick. */

 char Nick[21]; /* Local nick. */

 UWORD RevPort; /* Chat session port in network order. */

 ULONG TextColor; /* Text or font color in the form 0x00RRGGBB. */

 ULONG BackColor; /* Chat window background color in 0x00RRGGBB form. */

 UBYTE X1; /* Always 0x00. */

Second chat packet:

 ULONG HandShake; /* Always 0x00000064. ICQ99b uses 0x00000065. */

 ULONG UIN; /* Local UIN. */

 UWORD NickLen; /* Length of the nick. */

 char Nick[21]; /* Local nick. */

 ULONG TextColor; /* Text or font color in 0x00RRGGBB form. */

 ULONG BackColor; /* Background color in 0x00RRGGBB form. */

 UWORD Version; /* Version of TCP protocol used by the client. */

 UWORD X1; /* Revision of the TCP protocol, used by Mac clients. */

 ULONG Port; /* Chat session port in intel order. */

 ULONG IP; /* LAN External. */

 ULONG RealIP; /* LAN Internal. */

 UBYTE TCP_Flag; /* TCP capable flag again. */

 UWORD X2; /* Random, unique chat session identifier, use unknown. */

 ULONG FontSize; /* Size of the font. */

 ULONG FontFamily; /* Font family? Used for font substitution? */

 UWORD FontLen; /* Length of font name text. */

 char FontName[]; /* Font name. */

 UWORD X3; /* Usually 0x0002. Unknown. */

 UBYTE Count; /* For single-chat, always 0x00. When entering a chat session

 already in progress, this is a count of all other clients in

 the chat session. */

For single chat mode, this packet ends here with a Count of 0x00. When entering a chat session already in progress, Count will be greater than 0x00. For each other client in the chat session the following data will be appended to the second chat packet:

 UWORD Version; /* Version of the TCP protocol used by the client. */

 UWORD X1; /* Revision of the TCP protocol, used by Mac clients. */

 ULONG Port; /* Chat session port in intel order. */

 ULONG UIN; /* UIN of the client being referenced. */

 ULONG IP; /* LAN External. */

 ULONG RealIP; /* LAN Internal. */

 UWORD RevPort; /* Chat session port in network order. */

 UBYTE TCP_Flag; /* TCP Capable flag. */

 UWORD X2; /* Random, unique chat session identifier, use unknown. */

 ULONG HandShake; /* Always 0x00000064. ICQ99b uses 0x00000065. */

It should be stated that the above additional data added to the second chat packet will be data that was stored during a previous chat initialization phase and has nothing to do with the client currently being connected to. Upon receipt of this additional data, the client will attempt connect() with the supplied IP and port. At this point a normal chat initialization phase will begin with each of these additional clients. Also, each of these clients will send an extended second packet containing the data of all the other clients in the current session. Be prepared to ignore the UINs of those clients in which a connection has already been established.

Third chat packet:

 UWORD Version; /* Version of the TCP protocol used by the client. */

 UWORD X1; /* Revision of the TCP protocol, used by Mac clients. */

 ULONG Port; /* Chat listen() port in intel order. */

 ULONG IP; /* LAN External IP. */

 ULONG RealIP; /* LAN Internal IP. */

 UBYTE TCP_Flag; /* TCP Capable flag again. */

 UWORD X2; /* Random, unique chat session identifier, use unknown. */

 ULONG FontSize; /* Size of the font. */

 ULONG FontFamily; /* Font family? Used for font substitution? */

 UWORD FontLen; /* Length of font name. */

 char FontName[]; /* Font name. */

 UWORD X3; /* Usually 0x0002. Unknown. */

It is unknown what the random number is in the chat packets. However, the PC ICQ clients will only make one number for each chat session. If another, separate, chat session is started, then a new random number will be generated.

To be continued...

7. Calculating the Checkcode

The checkcode is calculated before encrypting the packet.

1. Calculate NUMBER1.

1. B8 = Byte at position 8 of the packet. (starting at position 0)

2. B4 = Byte at position 4 of the packet.

3. B2 = Byte at position 2 of the packet.

4. B6 = Byte at position 6 of the packet.

Now put theese parts together and call them NUMBER1:

NUMBER1 = 0x B8 B4 B2 B6 (B8 = MSB, B6 = LSB)

Here's a fragment of C-code that will take care of this:

unsigned long number1;

number1 = packet[8];

number1 <<= 8;

number1 |= packet[4];

number1 <<= 8;

number1 |= packet[2];

number1 <<= 8;

number1 |= packet[6];

2. Calculate the following.

· PL = Packet length

· R1 = A random number beetween 0x18 and PL

· R2 = Another random number beetween 0 and 0xFF

C-code example: (assuming that pl holds the packet length)

int r1, r2;

r1 = 0x18 + rand() % (PL - 0x18);

r2 = rand() % 0xFF;

· Calculate NUMBER2.

0. X4 = R1

1. X3 = NOT (BYTE at pos X4 in the packet)

2. X2 = R2

3. X1 = NOT (BYTE at pos X2 in the TABLE) (see TABLE section)

4. NUMBER2 = 0x X4 X3 X2 X1 (X4 = MSB, X1 = LSB)

C-code example:

unsigned long number2;

number2 = r1;

number2 <<= 8;

number2 |= packet[r1];

number2 <<= 8;

number2 |= r2;

number2 <<= 8;

number2 |= table[r2];

number2 ^= 0xff00ff;

1. You can now calculate the checkcode.

· CHECKCODE = NUMBER1 XOR NUMBER2

C example:

unsigned long cc = number1 ^ number2;

The Table

The algorithmes use a table of constants to found some numbers.

TABLE[X] mean data at position X in the table (starting at position 0).

POS DATA ASCII

--- --- ----------------

 00 - 59 60 37 6B 65 62 46 48 53 61 4C 59 60 57 5B 3D Y`7kebFHSaLY`W[=

 10 - 5E 34 6D 36 50 3F 6F 67 53 61 4C 59 40 47 63 39 ^4m6P?ogSaLY@Gc9

 20 - 50 5F 5F 3F 6F 47 43 69 48 33 31 64 35 5A 4A 42 P__?oGCiH31d5ZJB

 30 - 56 40 67 53 41 07 6C 49 58 3B 4D 46 68 43 69 48 V@gSA.lIX;MFhCiH

 40 - 33 31 44 65 62 46 48 53 41 07 6C 69 48 33 51 54 31DebFHSA.liH3QT

 50 - 5D 4E 6C 49 38 4B 55 4A 62 46 48 33 51 34 6D 36]NlI8KUJbFH3Q4m6

 60 - 50 5F 5F 5F 3F 6F 47 63 59 40 67 33 31 64 35 5A P___?oGcY@g31d5Z

 70 - 6A 52 6E 3C 51 34 6D 36 50 5F 5F 3F 4F 37 4B 35 jRn.Q4m6P__?O7K5

 80 - 5A 4A 62 66 58 3B 4D 66 58 5B 5D 4E 6C 49 58 3B ZJbfX;MfX[]NlIX;

 90 - 4D 66 58 3B 4D 46 48 53 61 4C 59 40 67 33 31 64 MfX;MFHSaLY@g31d

 A0 - 55 6A 32 3E 44 45 52 6E 3C 31 64 55 6A 52 4E 6C Uj2.DERn.1dUjRNl

 B0 - 69 48 53 61 4C 39 30 6F 47 63 59 60 57 5B 3D 3E iHSaL90oGcY`W[=.

 C0 - 64 35 3A 3A 5A 6A 52 4E 6C 69 48 53 61 6C 49 58 d5::ZjRNliHSalIX

 D0 - 3B 4D 46 68 63 39 50 5F 5F 3F 6F 67 53 41 25 41 ;MFhc9P__?ogSA%A

 E0 - 3C 51 54 3D 5E 54 5D 4E 4C 39 50 5F 5F 5F 3F 6F .QT=^T]NL9P___?o

 F0 - 47 43 69 48 33 51 54 5D 6E 3C 31 64 35 5A 00 00 GCiH3QT]n.1d5Z..

--- --- ----------------

Example : TABLE[0] = 0x59

 TABLE[0xF2] = 0x69

Note: A lot of UDP packet was check to recreate this table, but some

 data may be incorrect.

The Table in C

static const BYTE table[] = {

 0x59, 0x60, 0x37, 0x6B, 0x65, 0x62, 0x46, 0x48,

 0x53, 0x61, 0x4C, 0x59, 0x60, 0x57, 0x5B, 0x3D,

 0x5E, 0x34, 0x6D, 0x36, 0x50, 0x3F, 0x6F, 0x67,

 0x53, 0x61, 0x4C, 0x59, 0x40, 0x47, 0x63, 0x39,

 0x50, 0x5F, 0x5F, 0x3F, 0x6F, 0x47, 0x43, 0x69,

 0x48, 0x33, 0x31, 0x64, 0x35, 0x5A, 0x4A, 0x42,

 0x56, 0x40, 0x67, 0x53, 0x41, 0x07, 0x6C, 0x49,

 0x58, 0x3B, 0x4D, 0x46, 0x68, 0x43, 0x69, 0x48,

 0x33, 0x31, 0x44, 0x65, 0x62, 0x46, 0x48, 0x53,

 0x41, 0x07, 0x6C, 0x69, 0x48, 0x33, 0x51, 0x54,

 0x5D, 0x4E, 0x6C, 0x49, 0x38, 0x4B, 0x55, 0x4A,

 0x62, 0x46, 0x48, 0x33, 0x51, 0x34, 0x6D, 0x36,

 0x50, 0x5F, 0x5F, 0x5F, 0x3F, 0x6F, 0x47, 0x63,

 0x59, 0x40, 0x67, 0x33, 0x31, 0x64, 0x35, 0x5A,

 0x6A, 0x52, 0x6E, 0x3C, 0x51, 0x34, 0x6D, 0x36,

 0x50, 0x5F, 0x5F, 0x3F, 0x4F, 0x37, 0x4B, 0x35,

 0x5A, 0x4A, 0x62, 0x66, 0x58, 0x3B, 0x4D, 0x66,

 0x58, 0x5B, 0x5D, 0x4E, 0x6C, 0x49, 0x58, 0x3B,

 0x4D, 0x66, 0x58, 0x3B, 0x4D, 0x46, 0x48, 0x53,

 0x61, 0x4C, 0x59, 0x40, 0x67, 0x33, 0x31, 0x64,

 0x55, 0x6A, 0x32, 0x3E, 0x44, 0x45, 0x52, 0x6E,

 0x3C, 0x31, 0x64, 0x55, 0x6A, 0x52, 0x4E, 0x6C,

 0x69, 0x48, 0x53, 0x61, 0x4C, 0x39, 0x30, 0x6F,

 0x47, 0x63, 0x59, 0x60, 0x57, 0x5B, 0x3D, 0x3E,

 0x64, 0x35, 0x3A, 0x3A, 0x5A, 0x6A, 0x52, 0x4E,

 0x6C, 0x69, 0x48, 0x53, 0x61, 0x6C, 0x49, 0x58,

 0x3B, 0x4D, 0x46, 0x68, 0x63, 0x39, 0x50, 0x5F,

 0x5F, 0x3F, 0x6F, 0x67, 0x53, 0x41, 0x25, 0x41,

 0x3C, 0x51, 0x54, 0x3D, 0x5E, 0x54, 0x5D, 0x4E,

 0x4C, 0x39, 0x50, 0x5F, 0x5F, 0x5F, 0x3F, 0x6F,

 0x47, 0x43, 0x69, 0x48, 0x33, 0x51, 0x54, 0x5D,

 0x6E, 0x3C, 0x31, 0x64, 0x35, 0x5A, 0x00, 0x00,

};

8. Encrypting the packet

For a more detailed description, read Sebastien Dault's document.

Follow theese steps:

1. Calculate the Checkcode (see "Calculating the Checkcode")

2. Set PL = Packet length

3. Calculate the encryption code:

CODE = (LONG) (PL * 0x68656C6C) + CHECKCODE (flush the overflow)

4. For every longword (32 bits) in the packet, starting with 0x0A, XOR the longword with the CODE previously calcualted added to the byte at the corresponding position in the table. (eg. the longword at 0x0A in the packet should be XORed with the byte at position 0x0A in the table added to CODE.)

Now the packet is encypted. All we have to now is to insert the checkcode into the packet so the server will be able to decrypt it. The server excpects this code to be scrambled as follows:

1. Scramble the checkcode

Before inserting the checkcode you have to move the bits around a little. It can be done like this:

A1 = CHECKCODE AND 0x0000001F
A2 = CHECKCODE AND 0x03E003E0
A3 = CHECKCODE AND 0xF8000400
A4 = CHECKCODE AND 0x0000F800
A5 = CHECKCODE AND 0x041F0000

A1 = A1 SHL 0x0C (SHL = Bitwise shift left)
A2 = A2 SHL 0x01
A3 = A3 SHR 0x0A (SHL = Bitwise shift right)
A4 = A4 SHL 0x10
A5 = A5 SHR 0x0F

CHECKCODETOINSERT = A1 + A2 + A3 + A4 + A5

2. Insert the checkcode into the packet at pos 0x14.

In C-code it could look like this:

/*

Encrypting the packet.

Assuming that checkcode has been calculated as previously

described, and that pl = packet length.

The packet to encrypt is pointed to by pkpptr.

*/

code = pl * 0x68656c6c + checkcode;

for(pos=0xa;pos < (pl + 3);pos+=4)

{

pktptr[pos]^ = code + table[pos & 0xFF];

}

/*

Scrambling the checkcode.

Assuming that cc holds the checkcode.

*/

ULONG a[6];

a[1] = cc & 0x0000001F;

a[2] = cc & 0x03E003E0;

a[3] = cc & 0xF8000400;

a[4] = cc & 0x0000F800;

a[5] = cc & 0x041F0000;

a[1] <<= 0x0C;

a[2] <<= 0x01;

a[3] >>= 0x0A;

a[4] <<= 0x10;

a[5] >>= 0x0F;

checkcodetoinsert = a[1] + a[2] + a[3] + a[4] + a[5];

