--

�

	Disclaimer

Okay, I did the German-->English translation. I do however have absolutely no connection to the author(s) or distributing channels of the programs or any associated part of it. I do not know him and have never been in contact with him to my knowledge. The same goes the other way around. This is just my own, personal translation of some documentation, folks. It has not been checked by the author of the original German document, nor is it known to him, that I did this translation.

Therefore, save the effort - I can and will not answer any question arising in using this trans-lation or the programs for that part. Use, comment, change and distribute this translation as you need. But note the limitations!

If I could afford it, I would spend more time travelling the world, trying to learn more about foreign languages and cultures, and maybe be able to do better translations...

have fun! Helge

--

Development report of DoDi's VBTools (as of end of July 95)

To all the registered users: please excuse the time-delay, which has occurred for the shipment of the new versions. You are receiving the new versions still preliminary without conducted beta-testing, but hopefully not too much bugs have slipped attention. The actualised release and the final documentation will be dispatched to you later.

While the further development of the developers tools (VBPro, VBMap, VBDiff) is limited to a few improvements, the development of the Discompilers (VBDis) is rapid - so there can not be a final version expected soon. Therefore I have decided to distribute a preliminary version of the Discompilers in order to shorten the waiting time until the next version. VBDis has a follow-up, the new version VBMDis assists especially the optimising of VB-programs.

I am sorry that the documentation has not been able to catch up with the development, therefor the last changes in abbreviated form.

General

The installation of the programs is so easy that there is no set-up-program. For the Discompiler a separate directory is advised, the other tools can be directly installed to your VB-directory. If you have kept your archive (the *.zip) you can unpack it into directly to the directory you arranged for it. Or, simply unpack everything and copy the files to the appropriate places later on.

Since the tools are meant for the development of VB-programs, a correct installed Visual Basic 3.0 is seen as a prerequisite. All programs need the runtime library (VBRUN300.DLL) and the controls GRID.VBX and SPIN.VBX - they are belonging to VB and are therefore not provided. If you do have any problem, please refer to the files VB.INI in the Windows directory and to the AUTOLOAD.MAK in the VB-directory and check if the paths stated are correct.

If you have Visual Basic 4.0 installed, it is possible that more accommodations are necessary. In VB.INI the line vbpath= is evaluated and the file AUTOLOAD.MAK searched accordingly. This determines (finds out about) the path used for the installation of the VBX-files, which is not working any longer with VB 4.0. The same applies to the building of MAKEFILES, since the makefiles in VB 4.0 have a totally new format. If problems of greater extent occur, all functions which are being based upon VB.INI and AUTOLOAD.MAK will be neglected, or (disfavoured) substituted by an installation-option.

Windows 95 errors have occasionally been reported while starting the programs; but help can not be given. For diagnostics of mistakes (this is especially true for the Discompiler) the startform will show directly after start of the program. If any error messages occur before this form shows, the error can be pointed towards Visual Basic (i.e. VBRUN300.DLL) and Windows 95 not getting along too well. It is also possible that an incomplete installation of Visual Basic is the cause (but this should not have any effect upon the running of the programs).

After the form shows it can be seen upon it (Discompiler again) which files are used for the initialisation. Perhaps a shortcoming of VB is demonstrated at that time: as Microsoft states, it is possible (no cause named) that paths can not be detected. An appropriate error message, like “VBRUN300.300 not found“ and a file-dialogue for a manual input of the right directory for the Discompiler should be displayed.

Project-Manager VBPro

Upon the conditionally making of sourcecode debug-statements (stop, debug), which should not be part of the finished program, are recognised. If a line includes these strings, the line can be taken into the source-code or left out. If the making is incomplete, the source-file includes the text up to the mistake, so this mistake can easily be found.

Within the grid a popup-menu, to be opened with a left mouse-click, is build in. A value of any field can be changed, or a whole lines can be deleted. Since the usage of the left mouse-button is due to technical reasons (and at the same time disables the resizing of the cell-size of the grid), an additional status of the special keys (shift, control) is requested. Within the script-menu you can specify, if the popup-menu should be shown upon the usage of a special-key-combination. The default is set to the popup-menu without any special key pressed, so that means you have to press a special key to resize the cells. If in the menu “Shift Popup“ is marked, both functions are reversed.

Please notice, that the conditionally compilation needs additional sources, which are saved as text.

In June the protection of programs against discompilation has started and the first results are build-in into the Project-Manager. A floppy-disk (right now it is just one) is used, on which the compiled program is copied and while doing so, modificated, too. Furthermore a version information can be added. This information can be displayed by the file manager of Windows for Workgroups (menu item: properties). The installation function (VER.DLL) can also use this information.

For the following-up of pirate-copies a user database is implemented, in which all registered users for your programs can be stored - while producing the floppies you can choose the user from this database, who is going to get a registered version. This information is then going to be build-in into the program on the copying process. Additionally files (like documentation, special *.DLLs etc.) which were not needed during programming can also be copied to the disk now.

The protection of the programs, build into them on the copy-process, will result in a run-time error. This is not as elegant as a error message, but much more effective. Further changes are under way, but the work is more of cosmetic character - it is impossible to see at the moment, in which way other discompilers will react upon this protection. It has to be stated here, that this protections is just going to be incorporated in the registered version of the Project-Manager.

The creation of multi-language-versions of a program are only assisted with the option translation (German original: “Übersetzung“) in the file menu. Doing so all forms of a project will be searched for caption and text attributes and the found controls and texts are listed in a record (chart). There you fill in the translations next to the original titles - on names which stay the same no extra translations need to be added. The original names will than be implemented in the changed version. While the option translation (or “Übersetzung“) is marked, the translated texts of the source-code will be filled into the forms during copying. The (translation)-record is saved under the project-name with the file extension *.trx - therefore are changes possible only within the Project-Manager.

The translation-Function is (at this moment) not in the shareware-edition (“light“) available!

Performing adoption for different graphic-resolutions must still be done in different sources, since a static change in the forms are often not sufficient and the automatic calculation of the co-ordinates in Visual Basic do not function.

With the availability of VB 4.0 some functions be implemented, which enable (or at least assist) a project translation from VB 3.0 to VB 4.0, if this seems necessary.

Cross-reference VBMap

For a first time the display of binary saved modules is realised. With a double-click on the field with the symbol- or modulname the module will be displayed, regardless whether it was saved in binary or in text-mode. As a reminder of this function the mouse will be displayed differently while being in the field-region. The display of modules is being conducted like in an interpreter with a tiled window, where two different texts can be displayed. Marking the module and the texts is being done with two combo-boxes in the upper region of the window. A differentiation of object’s function is not implemented. Parts of the shown sourcecode can transferred via the clipboard into the interpreter or other programs.

For big projects the volume of lists can be defined. Two simple buttons (labels) above the global and the local symbol-record (chart) enable the following configurations:

For the global symbols it is possible to “hide“ (make invisible) variables, constants, types and sub-programs. “*“ turns all symbols on again, like they have been originally.

For the local symbols you can choose if the global definitions of a module should be displayed.

The choice of options is being accomplished through clicking the buttons; if options are not chosen they are displayed in a (not marked) grey.

Discompiler VBDis3 and VBMDis3

The bad news first:

Since big programs are showing unpredictable results sometimes large portions of the discompiler have to undergo changes. Since this will take a while, the released version is limited. Right now it checks, whether certain limits are encountered and if so, it will stop executing. Sorry, but this can not be changed before VB 4.0 is out and therefore will remain as a limitation within the light-version.

The good news:

VBMDis enables a comparison between the source code and the executable program! Compilate an executable program and give VBMDis the name of the makefile. The discompiler starts (like in VBDis), then two windows appear with the modules of the interpreter and the executable program. The windows are both tiled to allow for the display of the texts and the tokens for each registered line. For the display of the tokens the sources have to be saved in binary mode.

Furthermore the variables can be displayed and (like all sub-programs) named; the assignment of values for datatypes is possible, if the variables and constants are not used in the program and the discompiler therefore fails to recognise the datatypes.

VBCtrl has been modified and saved from unnecessary ballast; saving is enabled also in the light-version by now. The descriptions are saved automatically when the link-window is closed.

However, VBDis (light) can not work with the descriptions saved in the new format.

The datastructures of the discompiler have been changed completely, the discompiler starts up faster and should have won in overall performance - further optimising is in the pipe.

Since possible errors during the process of producing forms in a binary format can occur, they have to be assembled from the binary saved form and the as text saved sourcecode. Please notice the necessary steps achieving this:

1. start discompiler, choose *.exe-file and directory for the output

2. after message “Forms als Text speichern“ (save forms as text), start the interpreter with the produced makefile, without exiting the discompiler!

3. in the interpreter: save all forms as text (Save As...)

4. exit interpreter and choose within the discompiler menu “Forms zusammenfügen“ (join forms).

Only now the project is completly composed and can be started in the interpreter.

Error messages of the interpreter are normally caused by not or incorrect identified types of variables. In this case look for additional emplacement of this variable, the declaration or other calls of the same sub-program with identified types of variables. Extern functions (“Declare...“) can partly looked into with the API Help of VB, but changes from the permanent datatypes in “As Any“ have to be incorporated. A few functions with unclear results (returns ??) can be declared as “Sub’s instead of “Function’s - in this case (you will notice a call of the sub-program) the declaration have to remain

Some custom-controls need a special development-version or -license of the VBX or additional DLLs if they are used with the interpreter. In this cases the program can sometimes not be started, if it can be started the controls in question might be substituted with red pictures.

Last but not least, some errors while calling of external functions at runtime have not been covered. Errors which are caused by their declaration. In this cases you need to experiment with the parameter (arguments) and “ByVal“.

If other problems with missing variables or datatypes occur, i.e. problems which should be clearly identified by their character, you need to multiple-scan before producing the code. If this is needed please get in contact with me and I will add a menu-item “produce project“, which analyses the program once more and should give a somewhat better source.

Conclusion

The protection of programs against discompiling can not be increased with a public available tool, since the changes made in the program can be observed and later implemented in any discompiler. Only the protection against VBDis3 can be build in as an optimising method, but this means that this method is then known. As far as it is recognised, all control names can be erased from the executable program. So the editing of your programs with VBPro is increasing the level of protection against discompiling.

Perhaps you got an idea, how programs can be protected, without opening up the possibility of everyone interested being able to see how it is done and how it can be avoided?

If so, drop me a line, e.g. for comments, error message - the author of DoDi’s VBTools would like to thank You!

		Dr. H.-P. Diettrich

		Weißenburgstr. 2 c

		D-70180 Stuttgart

MausNet:	Hans-Peter Diettrich @ S

Fido:		über WINDOWS.VB.GER oder Hans-Peter_Diettrich@s.maus.de (?)

Address will change - all registered users will be notified.

