Beyond Web Forms Part 2

Compiling your Skinned Website with CodeDOM

By Harry Pierson

In the first half of this article, we built an engine for skinning web pages on top of the ASP .NET infrastructure located in the System.Web namespace. And while that engine can extract XML content from business objects, SQL Server 2000 databases and the HTTP request collections, it is not the most scalable web request processing engine ever built. Every web request to a given skinned web page results in the loading of the XML data from disk, parsing the XML into a DOM tree and querying that DOM for elements in the web skin namespace. These operations take up time and resources yet are identical for each request of a given web page.

A more scalable approach would be to only read the XML in the first time it was requested and use it to build a compiled object that services the web request. Traditionally, this type of code generation technique would be ruled out due to its high level of complexity. However, the .NET architects realized that this approach would yield incredibly scalable results, especially when compared to the original ASP’s interpreted code approach
. To facilitate this type of application, .NET includes both a code generation library and the necessary hooks in ASP .NET to utilize generated web request handlers. In this article, we will be rewriting the web skin engine to support compiling of the skinned web pages. As we will see, .NET makes this relatively easy to do.
Generating Code with CodeDOM

As you probably know, all the code in the .NET Common Language Runtime is in a format known as Intermediate Language, or IL. IL looks vaguely like an object oriented assembly language. It has all the low-level types of operand you would expect from an assembly language: Load, Store, Branch, Add, Xor and so on. However, it also has operands you wouldn’t see in a machine assembly language: NewObj, InitObj and CallVirt. This high level object model built directly into the IL is one of the ways by which .NET achieves language independence.
In order to dynamically create .NET assemblies, you could use classes from the System.Reflection.Emit namespace. This namespace includes builder classes for each type of IL construct (assembly, type, method, field, etc). For builders that have associated code, a method named GetILGenerator is available. The ILGenerator class has a heavily overloaded Emit method for writing out the actual opcodes that make up a .NET assembly.
While it would be possible to generate and compile a web request handler using Reflection.Emit, the process would be incredibly tedious. IL has no high-level language constructs, like if/then statements or for/next loops. These are typically implemented using IL branch operations, but building the many required branches is tedious and thus error prone. For building robust code quickly, we need a system that operates at a higher level than IL.
Luckily, .NET provides a higher level library for generating code called CodeDOM. CodeDOM represents a tree, similar to the HTML or XML DOM. However, instead of a tree of data or user interface markup, CodeDOM contains the syntax tree for a block of code. High-level language constructs, such as if/then or for/next loops have associated objects in the CodeDOM namespace, like CodeConditionStatement and CodeIterationStatement. Conceptually, this is similar to the way a compiler works. A compiler front end is a scanner and a parser that converts the source code text to an abstract syntax tree. The compiler back end then converts this tree into the executable binary machine code.
When using CodeDOM, the developer writes the front end compiler code to generate the tree. Once the tree has been built, a CodeCompiler object can be used to compile the CodeDOM tree into an executable assembly. Alternatively, a CodeGenerator object can be used to generate the source code text that would compile into the given CodeDOM tree
. Microsoft provides CodeDOM support for all four of its managed providers
 and many of the third party languages support CodeDOM as well.
The CodeDOM library is used to generate code all over .NET. XML Schemas, web service proxies, regular expressions and ASP .NET web pages all use CodeDOM to generate executable code, either as source or binary code. ASP .NET has particular support for CodeDOM generated web request handlers via its HTTP handler factory classes.
ASP .NET and the Abstract Factory Pattern

In the last article, we learned how incoming web requests can be mapped to classes that implement the IHttpHandler interface. In the sample application included with that article, files with an .xml extension were mapped to the SkinHandler class. All of the different xml files were mapped to the same handler class. However, as was discussed in the introduction, what we need is the ability to generate a custom handler class for each individual xml file. This is where the HTTP handler factories come into play.
When you want to abstract the creation of a class away from the code that uses it, the abstract factory design pattern is a good solution. An abstract factory class exposes a method that constructs a concrete class that implements an abstract interface or base class. This way, the code that uses the concrete class is isolated from the code that created it. Often this is used with data providers – such as a factory class that returns either a SqlConnection or an OledbConnection via the common IDbConnection interface that they both implement. ASP .NET uses this pattern in the construction of custom web handlers.
In web.config (or machine.config) we can map a given path to a handler factory rather than to a handler class. You can see this in machine.config:

<add verb="*" path="*.aspx" type="System.Web.UI.PageHandlerFactory"/>

At web request time, the ASP .NET pipeline will ask the handler factory for a handler class instance. The factory can then use any mechanism it chooses to build the handler class instance, including dynamically generating a handler class to service the web page request. This is exactly how ASP .NET Web Forms supports compiled web pages. ASPX files are mapped to the PageHandlerFactory class that compiles the given web page into an executable class the first time the page is requested. After that, the PageHandlerFactory retrieves the compiled executable from the server cache, creates a new instance and returns that handler to be executed for the current web request. We will be building a SkinHandlerFactory for our skinned web pages.
An HTTP handler factory must implement the IHttpHandlerFactory interface. This interface has two methods: GetHandler and ReleaseHandler. Of the two, GetHandler is much more important method – ReleaseHandler is only used for handler instance management
. GetHandler takes in a series of parameters: the HttpContext, the HTTP request type (GET or POST), and both the virtual and physical locations of the requested resource. It returns an IHttpHandler. ASP .NET then calls ProcessRequest on this handler as is described in the previous article.
The handler factory can use whatever mechanism it chooses to create a handler class instance. In the SkinHandlerFactory, there are two hard coded handlers that can be returned for debugging purposes. The ShowXmlHandler returns the raw XML as it appears on the disk, with no processing. The ShowCodeHandler utilizes the CodeGenerator object to display the source code to the custom generated web request handler. It can even use different language code providers, allowing the user to see what the code would look like in any CodeDOM enabled language. Both of these classes exist at compile time – the SkinHandlerFactory returns instances of either of these if the __admin variable appears in the query string. However, assuming the __admin query string variable is absent, the SkinHandlerFactory will generate a dynamic web request handler to service requests for a specific page.
Implementing the Handler Factory
The meat of the SkinHandlerFactory is the implementation of the GetHandler method. After checking for the __admin query string variable, GetHandler checks the HTTP context’s cache object for a previously generated handler for the requested file. The cache object is one of the intrinsic objects exposed by the HTTP context the same way the request and response objects are. There is only one cache object per web application, so items added to it while handling a web request will be available on subsequent requests. The cache is keyed by the url of the requested file. If there is a handler in the cache for the requested url, it is returned and the GetHandler method ends. Note, there is only one handler instance ever created of the dynamic handler. This is because there is never any shared static or class level variables in the handler – all the processing uses items passed on the stack to the ProcessRequest method.
While retrieving a preexisting instance from the cache is the more common scenario (it happens every request except the first one), the instance has to get into the cache somehow. Assuming there is not a handler instance in the cache the SkinHandlerFactory goes about creating one. The factory opens up the requested XML file with an XmlTextReader
 and passes it along with some other parameters to the CreateCode static method of the DynamicHandlerBuilder class.
DynamicHandlerBuilder is where all the code generation occurs. CreateCode() returns a CodeNamespace containing a single class – the dynamic web request handler for the skinned web page. This CodeNamespace is then compiled using the C# CodeProvider. Other languages would work just as well here, but since there are no language specific elements as there might be on an ASP .NET web page, there’s no reason not to hard code the language to C#. The ability to add arbitrary code to the skinned web page would be a great addition. If it were added, there would need to be a mechanism to choose the right CodeProvider language for the page. Assuming the code compiles, an instance of the class is created, added to the cache and returned to ASP .NET in order to process the current web request.

When the instance is added to the cache, an associated CacheDependency object is also created. The CacheDependency object automatically removes the object from the cache when the associated file or directory is changed. SkinHandlerFactory uses a CacheDependency object when adding a handler instance to the cache, keying the cached instance back to the original XML file it was created from. This way, if the XML file is updated, the cached handler instance would be automatically removed and a new handler would be built the next time the updated XML file was requested.
Building the Dynamic Request Handler

CreateCode is where all the code generation occurs. It takes four parameters: the XmlReader for the current requested page, the namespace and class name for the dynamically generated request handler, and a string collection. This string collection is intended to hold a list of assemblies referenced by the dynamic request handler. This information is needed when compiling the CodeDOM tree, just as it is needed when using Visual Studio .NET or the command line compilers. This collection is initialized to a default set of assemblies including System, System.Web, System.Xml and DevHawk.Web. If business objects are referenced in the file, the assembly that contains the business object will be added to the collection of referenced assemblies.
� Recent benchmarks show that ASP .NET is as much as four times faster than ASP. Check out http://www.gotdotnet.com/team/compare/nileperf.aspx for an example of this benchmarking.

� There is also a definition for a CodeParser object that would parse source code text into a CodeDOM tree. However, none of the Microsoft compilers support this functionality at this time.

� CodeDOM is supported in C#, VB.NET, JScript and the recently released J#. However, there is no CodeDOM support for C++.

� If you examine the System.Web.UI.PageHandlerFactory class with ILDASM, you’ll see that even the production web forms HTTP handler factory has an empty implementation of ReleaseHandler.

� Unlike an XML DOM, the XmlReader parses the XML one node at a time, discarding it after it has been read. This is much more efficient than building a DOM tree in memory. Conceptually, XmlReader is similar to the Simple API for XML or SAX, but is much easier to use.

